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When building systems that guarantee confidentiality, system designers must first

define confidentiality appropriately. Although researchers have proposed defini-

tions of properties such as secrecy, anonymity, and privacy for a wide variety of

system models, general definitions that are intuitive, widely applicable, and suf-

ficiently formal have proven surprisingly elusive. The goal of this dissertation

is to provide such a framework for systems that interact with multiple agents,

emphasizing definitions of secrecy (to rule out unwanted information flows) and

anonymity (to prevent observers from learning the identity of an agent who per-

forms some action). The definitions of secrecy extend earlier definitions of secrecy

and nondeducibility given by Shannon and Sutherland. Roughly speaking, one

agent maintains secrecy with respect to another if the second agent cannot rule

out any possibilities for the behavior or state of the first agent. These definitions

are characterized syntactically, using a modal logic of knowledge. Definitions of

anonymity are given, with respect to agents, actions, and observers, and are also

stated in terms of a modal logic of knowledge. The general framework is shown

to handle probability and nondeterminism cleanly, and to be useful for reasoning

about asynchronous systems as well as synchronous systems. It also suggests gen-

eralizations of secrecy and anonymity that may be useful for dealing with issues

such as resource-bounded reasoning. Finally, the dissertation leverages these def-



initions of secrecy and formulates new strategy-based information-flow conditions

for a simple imperative programming language that includes input and output op-

erators. A soundness theorem demonstrates the feasibility of statically enforcing

the security conditions via a simple type system.
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Chapter 1

Introduction
The goal of this dissertation is to provide a formal framework for reasoning about

confidentiality properties in systems with which multiple agents interact over time.

The importance of confidentiality in multiagent systems has increased greatly dur-

ing the past several years due to the widespread use of communication networks

such as the Internet. Computer users may be reluctant to engage in useful activities

such as Web browsing, message sending, and file sharing unless they can receive

guarantees that their privacy or anonymity will be protected to some reasonable

degree. Similarly, large organizations want guarantees that their communication

systems will not leak confidential data to unauthorized users.

When building systems that provide confidentiality guarantees, system design-

ers must first start with appropriate definitions of confidentiality. Though defi-

nitions of properties such as secrecy, anonymity, and privacy have been proposed

for a wide variety of system models, general definitions that are intuitive, widely

applicable, and sufficiently formal have proven surprisingly elusive.

Properties such as secrecy, anonymity, noninterference, privacy, and so on can

be construed as providing answers to the following set of questions:

• What information needs to be hidden?

• Who does it need to be hidden from?

• How well does it need to be hidden?

By analyzing confidentiality properties with these questions in mind, it often be-

comes clear how different properties relate to each other. These questions can also

1
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serve as a test of a definition’s usefulness: a property should be able to provide

clear answers to these three questions.

We focus here on two particular confidentiality properties: secrecy, which re-

quires that the state of one agent remains hidden from others, and anonymity,

which requires that the identity of the agent who performs some action remains

hidden from other observers. Our definitions of secrecy and anonymity focus on

the knowledge of agents who interact with a system. Accordingly, we state many

of our definitions in terms of a logic of knowledge. By formalizing secrecy and

anonymity in terms of knowledge we can capture the intuitions that practitioners

have and also equate our knowledge-based definitions with more standard semantic

definitions.

The use of the term “secrecy” in this dissertation is perhaps somewhat nonstan-

dard. In contrast to definitions that are concerned with the secrecy of particular

secrets (such as encrypted messages), the definitions of secrecy presented here aim

to ensure that one agent learns nothing at all about the state of another. The term

“total secrecy” might be more indicative of the general class of properties in which

we are interested, but we avoid using it as an umbrella term both for brevity and

because we use the term in a specific technical sense later in the dissertation. Our

definitions of secrecy can be viewed as restrictions on the information that may

flow from one agent to another, and are similar in spirit to other information-flow

properties such as noninterference.

We believe that it is important to provide broad, general definitions of secrecy

and anonymity for a general class of multiagent systems—definitions that empha-

size the underlying unity of the notions we are trying to capture. Our work is

intended to to do just that. Although our definitions should be appropriate for
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a wide variety of settings, we pay special attention to the domain of imperative

programming languages. In particular, we apply our definitions of secrecy to for-

malizing definitions of information-flow security for interactive programs written

in a simple imperative language. We hope it will be clear that our definitions apply

equally well to other settings.

In the remainder of this introductory chapter we motivate the need for a new

framework in which we can couch semantic definitions of secrecy and anonymity.

In Section 1.1 we discuss secrecy and in Section 1.2 we discuss anonymity. In Sec-

tion 1.3 we discuss definitions of information-flow security for imperative programs,

and in Section 1.4 we describe the structure of the rest of the dissertation.

1.1 Secrecy and information flow

In the past three decades there have been many attempts to define what it means

for a system to be perfectly secure, in the sense that one group of agents is unable to

deduce anything at all about the behavior of another group. More generally, many

papers in computer science have, in a variety of different settings, defined properties

of secrecy and privacy and have discussed techniques for achieving these properties.

In the computer-security literature, early definitions of “perfect security” were

based on two different intuitions. Noninterference [31] attempted to capture the

intuition that an agent at a high security level is unable to interfere with an

agent at a lower security level, while nondeducibility [87] attempted to capture the

intuition that an agent at a low security level is unable to deduce anything about

the state of agents at a higher security level. Others definitions have involved a

notion of information flow, and taken a system to be secure if it is impossible

for information to flow from a high user to a low user. With these basic ideas
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in mind, definitions of security have been provided for a wide variety of system

models, including semantic models that encode all possible input/output behaviors

of a computing system and language-based models that deal with process algebras

and with more traditional constructs such as imperative programming languages.

(Focardi and Gorrieri [22] provide a classification of security properties expressed

using process algebras; Sabelfeld and Myers [76] give a survey of language-based

techniques.)

Sutherland’s definition of nondeducibility was based on a simple idea: a system

can be described as a set of “worlds” that encode the local states of users, and

security is maintained if high and low states are independent in the sense that a low

user can never totally rule out any high state based on his own local state. As we

shall see, nondeducibility is closely related to Shannon’s [81] probabilistic definition

of secrecy in the context of cryptography, which requires high and low events to

be probabilistically independent. This can be shown to imply that the low agent’s

posterior probability of a high event should be the same as his prior probability of

that event before he began interacting with the system. (Nondeducibility is also

closely related to Cohen’s earlier definition of strong dependency [7]. Cohen’s work

is concerned with information transmission over channels, which are represented

as functions that transform inputs into outputs, whereas Sutherland’s work is

concerned with possible worlds to represent states of a system, but their definitions

are essentially identical.)

Definitions of noninterference that follow Goguen and Meseguer’s early work

(see, for example, McCullough [56] and McLean [58]) are quite different in flavor

from the definitions of Shannon and Sutherland. Typically, they represent the

system as a set of input/output traces, and deem the system secure if the set
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of traces is closed under operations that add or remove high events. Variants

of this idea have been proposed to deal with issues such as verification, system

composition, timing attacks, and so on. Although these definitions have been

useful for solving a variety of technical problems, the complexity of some of this

work has, in our view, obscured the simplicity of earlier definitions based on the

notion of independence. While nondeducibility has been criticized for its inability

to deal with a variety of security concerns, we claim that the basic idea captures

notions of secrecy and privacy in an elegant and useful way.

We define secrecy in terms of an agent’s knowledge, using the “runs-and-

systems” framework [20], which generalizes the standard input/output trace mod-

els that have been used in many definitions of noninterference. The trace-based

approach has been concerned primarily with the input and output values exchanged

as a user or observer interacts with the system. Thus, with a trace-based approach,

it is possible to define secrecy only for systems that can be characterized by ob-

servable input and output events. This is insufficient for modeling a variety of

interesting systems. As Focardi and Gorrieri [22] point out, for example, it is dif-

ficult to deal with issues such as deadlock using a purely trace-based approach.

It is also difficult to represent an agent’s notion of time in systems that may ex-

hibit differing degrees of synchrony. As we shall see, the added generality of the

runs-and-systems approach lets us deal with these issues in a straightforward way.

Many frameworks for reasoning about information flow have assumed, often

implicitly, a very coarse notion of uncertainty. Either an agent knows, with cer-

tainty, that some fact is true, or she does not; a definition of secrecy therefore

amounts to a characterization of which facts some agent must not know, or which

facts she must think are possible. Indeed, this is the intuition that we make precise
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in Section 3.1.4. In the literature, such definitions are called possibilistic, because

they consider only what agents consider possible or impossible. In practice, how-

ever, such a coarse-grained notion of uncertainty is simply too weak. It is easy

to concoct examples where one agent has possibilistic secrecy but where intuition

suggests that secrecy is not maintained. We extend our definitions of secrecy to

incorporate probability, a much more fine-grained notion of uncertainty, using a

standard approach for reasoning about probability in the runs-and-systems frame-

work [44]. Just as Shannon’s definitions of secrecy can be viewed as a probabilistic

strengthening of Sutherland’s definition of nondeducibility, our definitions of prob-

abilistic secrecy generalize the possibilistic definitions we give. In fact, there is

a sense in which they are the same definitions, except with a different measure

of uncertainty—a point made precise when we generalize them using plausibilistic

measures in Section 3.3.

We also provide syntactic characterizations of secrecy, using a logic that in-

cludes modal operators for reasoning about knowledge and probability. We dis-

cuss what it means for a fact to “depend on” the state of an agent and show that

secrecy can be characterized as the requirement that low agents never know any

fact that depends on the state of a high agent. (In the probabilistic case, the

requirement is that low agents must think that any such fact is equally likely at all

points of the system.) This knowledge-based characterization lets us make precise

the connection between secrecy (of one agent with respect to another) and the

notion of a “secret,” that is, a fact about the system that an agent is not allowed

to know. This syntactic approach also opens the door to natural generalizations of

information-flow properties that require secrecy for only some facts, and allows us

to consider notions of secrecy based on more computational notions of knowledge,
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which may be more appropriate for resource-bounded agents.

As we show in Chapter 5, our approach provides insight into a number of other

information-flow conditions that have been proposed in the literature. We illus-

trate this point by considering separability [58], generalized noninterference [58],

nondeducibility on strategies [93], and probabilistic noninterference [32]. One of

our goals in this chapter, obviously, is to convince the reader that our definitions

are in fact as general as we claim they are. More importantly, we hope that pro-

viding a unified framework for comparing definitions of secrecy will facilitate the

cross-fertilization of ideas.

1.2 Anonymity

A variety of systems have been built to provide anonymity for the senders and

receivers of electronic communication. (See, for example, [1, 30, 51, 71, 82, 88].)

The goal of these systems, stated broadly, is to ensure that the identity of agents

who transmit communication remains hidden from other users. Because these

systems offer quite different guarantees about the degree of anonymity that they

provide, we believe that it is helpful to have a formal framework that can be used

to specify anonymity requirements and compare different systems. To this end, we

provide a variety of definitions that formalize what it means for the identity of an

agent who performs an action to be hidden from observers of the system.

Anonymity is obviously different from secrecy. Roughly speaking, a high agent

maintains secrecy with respect to a low agent if the low agent never knows anything

about the high user that he didn’t initially know. In contrast, our definitions

of anonymity say that an agent performing an action maintains anonymity with

respect to an observer if the observer never learns certain facts having to do with
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whether or not the agent performed the action. It is possible for an agent to have

complete secrecy—for some definition of secrecy—while still not having very strong

guarantees of anonymity. Conversely, it is possible to have anonymity without

preserving secrecy. Thinking carefully about the relationship between secrecy and

anonymity suggests new and interesting ways of thinking about anonymity. In

addition, formalizing anonymity in terms of knowledge is useful for capturing the

intuitions that practitioners have. Not surprisingly, our formalization of anonymity

is similar in spirit to our formalization of secrecy.

We remark that we are not the first to use knowledge and belief to formal-

ize notions of anonymity and other similar properties. Glasgow, MacEwen, and

Panangaden [29] describe a logic for reasoning about security that includes both

epistemic operators (for reasoning about knowledge) and deontic operators (for rea-

soning about permission and obligation). They characterize some security policies

in terms of the facts that an agent is permitted to know. Intuitively, everything

that an agent is not permitted to know must remain hidden. Our approach is

similar, except that we specify the formulas that an agent is not allowed to know,

rather than the formulas she is permitted to know. One advantage of accentuating

the negative is that we do not need to use deontic operators in our logic.

Syverson and Stubblebine [89] use an epistemic logic to formalize definitions

of anonymity, but the goal of our work is quite different from theirs. Syverson

and Stubblebine focus on describing an axiom system that is useful for reasoning

about real-world systems, and on how to reason about and compose parts of the

system into adversaries and honest agents. Our focus, on the other hand, is on

giving a semantic characterization of anonymity in a framework that lends itself

well to modeling systems.
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Shmatikov and Hughes [47] (whose work we discuss in more detail in Sec-

tion 5.2.3) position their approach to anonymity as an attempt to provide an

interface between logic-based approaches, which they claim are good for specifying

confidentiality properties, and formalisms like CSP, which they claim are good for

specifying systems. We agree with their claim that logic-based approaches are good

for specifying properties of systems. But given an appropriate semantics for the

logic, no such interface is necessary. There are many ways of specifying systems,

but many end up identifying a system with a set of runs or traces and can thus be

embedded in the runs and systems framework that we use.

As with secrecy, many definitions of anonymity do not deal with probability.

Certainly, if an agent j believes that any of 1000 users (including i) could have

performed the action that i in fact performed, then i has some degree of anonymity

with respect to j. However, if j believes that the probability that i performed the

action is .99, the possibilistic assurance of anonymity may provide little comfort.

Most previous formalizations of anonymity have not accounted for probability. One

significant advantage of our formalism is that it is completely straightforward to

add probability by following the same approach that we use for secrecy. As we

show in Section 4.2, this lets us formalize the (somewhat less formal) definitions

of probabilistic anonymity given by Reiter and Rubin [71].

In this dissertation we are more concerned with defining and specifying ano-

nymity properties than with describing systems for achieving anonymity or with

verifying anonymity properties. We define what anonymity means by using syn-

tactic statements with a well-defined semantics. Our work is similar in spirit to

previous papers that have given definitions of anonymity, such as the proposal for

terminology given by Pfitzmann and Köhntopp [68] and the information-theoretic
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definitions of anonymity given by Diaz, Seys, Claessens, and Preneel [15].

1.3 Information-flow security for imperative programs

Secure programs should maintain the secrecy of confidential information. For

sequential imperative programming languages, this principle has led to a variety of

information-flow security conditions which assume that all confidential information

is supplied as the initial values of a set of program variables. This assumption

reflects an idealized batch-job model of input and output, whereby all inputs are

obtained (as initial values of program variables) from users before the program

begins execution, and all outputs are provided (as final values of program variables)

after program termination. Accordingly, these security conditions aim to protect

the secrecy only of initial values.

Many real-world programs, however, are interactive, sending output to and

receiving input from their external environment throughout execution. Examples

of such programs include web servers, GUI applications, and some command-line

applications. The batch-job model is unable to capture the behavior of interactive

programs because of dependencies between inputs and outputs. For example, a

program implementing a challenge/response protocol must first output a challenge

to the user and then accept the user’s response as input; clearly, the user cannot

supply the response as the initial value of a program variable. In contrast, the

interactive model generalizes the batch-job model: any batch-job program can be

simulated by an interactive program that reads the initial values of all relevant

variables, executes the corresponding batch-job program, and finally outputs the

values of all variables.

Given the prevalence of interactive programs, it is important to be able to
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reason about their security properties. Traditionally, researchers have reasoned

about information flow in interactive systems by encoding them as state machines

(e.g., Mantel [54] and McLean [57, 58]) or as concurrent processes (e.g., Focardi

and Gorrieri [22]) and applying trace-based information-flow security conditions.

But since implementors usually create imperative programs, not abstract models,

a need exists for tools that enable direct reasoning about the security of such

programs.

We address that need by developing a model for reasoning about the informa-

tion-flow security of interactive imperative programs. We give novel strategy-based

semantic security conditions that are special cases of our definitions of secrecy. Our

model achieves a clean separation of user behavior from program code by employ-

ing user strategies, which describe how agents interact with their environment.

(The definitions build on the work of Wittbold and Johnson [93] and of Gray and

Syverson [32], both of whom consider user strategies.) Moreover, our framework

for secrecy suggests natural ways to give definitions of information-flow security

for imperative programs that account for nondeterminism and randomization.

We also leverage previous work on static analysis techniques by adapting the

type system of Volpano, Smith, and Irvine [92] to an interactive setting. Our

results demonstrate the feasibility of enforcing our stringent definitions of security.

1.4 Overview

The material of Chapter 2 is a review of the runs-and-systems framework of Fagin,

Halpern, Moses, and Vardi [20]. We describe their state-based approach for repre-

senting the local states of different agents in a multiagent system and an epistemic

logic for reasoning about the knowledge of such agents. We also describe how
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to add probability to the runs-and-systems framework, following the approach of

Halpern and Tuttle [44].

Chapter 3 presents definitions of secrecy in the context of the runs-and-systems

framework. Most of the definitions are semantic in nature; that is, they are con-

cerned with the local states of agents. We do, however, provide several syntactic

characterizations using the epistemic logic of Chapter 2, and we prove several re-

sults establishing equivalences between the semantic and logic-based definitions.

We also give probabilistic definitions of secrecy in Chapter 3 and generalize many

of the definitions using plausibility measures.

In Chapter 4 we give a variety of definitions of anonymity, most of which are

stated syntactically (as logical formulas that are valid in systems that preserve

anonymity).

Chapter 5 considers related work. We look at a number of definitions of secrecy,

noninterference, and anonymity, and establish that some of those definitions can

be cast as special cases of our definitions.

Chapter 6 considers definitions of secrecy for interactive imperative programs.

We give an operational semantics for a small interactive language, provide defini-

tions of noninterference that account for nondeterminism and randomization, and

describe a type system for the language that is sound with respect to the definitions

of noninterference.

The material in Chapters 3, 4, and 5 is joint work with Joseph Halpern and

appears in [39], [40], and [41]. The material in Chapter 6 is joint work with Michael

Clarkson and Stephen Chong [67].



Chapter 2

A Model for Multiagent Systems
This chapter provides a review of background material that is necessary for subse-

quent chapters. The technical material is not new: the framework for multiagent

systems described here was established in work by Halpern and Fagin [37] and

Halpern and Moses [38]. (See [20] for an excellent introduction to knowledge in

multiagent systems.) The approach for reasoning about probability in multiagent

systems described in Section 2.2 originates with Halpern and Tuttle [44].

2.1 Knowledge and multiagent systems

A multiagent system consists of n agents, each of whom is in some local state at

a given point in time. We assume that an agent’s local state encapsulates all the

information to which she has access. In a security setting the local state of an

agent might include initial information regarding keys, the messages she has sent

and received, and perhaps the reading of a clock. The basic framework makes no

assumptions about the precise nature of the local state.

We can view the whole system as being in some global state, which is a tuple

consisting of the local state of each agent and the state of the environment, where

the environment consists of everything relevant to the system that is not contained

in the state of the agents. Thus, a global state has the form (se, s1, . . . , sn), where

se is the state of the environment and si is agent i’s state, for i = 1, . . . , n.

A run is a function from time to global states. Intuitively, a run is a complete

description of what happens over time in one possible execution of the system. A

point is a pair (r,m) consisting of a run r and a time m. For simplicity, we take

13
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time to range over the natural numbers. At a point (r,m), the system is in some

global state r(m). If r(m) = (se, s1, . . . , sn), then we take ri(m) to be si, agent

i’s local state at the point (r,m). Formally, a system consists of a set of runs (or

executions). Let PT (R) denote the points in a system R.

Given a system R, let Ki(r,m) be the set of points in PT (R) that i thinks are

possible at (r,m); that is,

Ki(r,m) , {(r′,m′) ∈ PT (R) : r′i(m
′) = ri(m)}.

The set Ki(r,m) is often called an i-information set because, intuitively, it corre-

sponds to the system-dependent information encoded in i’s local state at the point

(r,m).

A natural question to ask is where these runs come from. While the framework

itself does not deal with this issue, in practice we are interested in systems where

the runs are generated by a simple set of rules, such as a communication or security

protocol, a program written in some programming language, or a process described

in a concurrent process language. Translating such rules to a set of runs is not

always straightforward, but doing so is often useful inasmuch as it forces us to

think carefully about what features of the system are essential and relevant to the

safety or correctness issues that we are interested in. With respect to secrecy, the

way in which we model the local states of various agents is especially important. In

particular, if we do not want the actions or choices made by one agent to affect the

state of another agent, we should include sufficient information in the local state

of the first agent to reason about those actions or choices. (This issue is discussed

in more detail in Sections 3.2.4 and 5.1.2.)

To reason formally about secrecy and anonymity in multiagent systems, we use

a logic of knowledge and time. Starting with a set Φ of primitive propositions,



15

we close off under negation, conjunction, the modal operators Ki for i = 1, . . . , n,

and ♦. In the context of security protocols, the set Φ might consist of primitive

propositions corresponding to facts such as “the key is n” or “agent A sent the

message m to B.” As usual, Kiφ means that agent i knows φ; Kiφ at a point

(r,m) if φ is true at all points in Ki(r,m). Finally, ♦φ is true at a point (r,m) if

φ is true at some point on run r (either before, at, or after time m). While it is,

of course, possible to define other temporal operators, the ♦ operator will prove

particularly useful in our definitions.

We use the standard approach [20] to give semantics to this language. An

interpreted system I consists of a pair (R, π), where R is a system and π is an

interpretation for the primitive propositions in Φ that assigns truth values to the

primitive propositions at the global states. Thus, for every p ∈ Φ and global state

s that arises in R, we have (π(s))(p) ∈ {true, false}. Of course, π also induces

an interpretation over the points in PT (R): simply take π(r,m) to be π(r(m)).

We now define what it means for a formula φ to be true at a point (r,m) in

an interpreted system I, written (I, r,m) |= φ, by induction on the structure of

formulas:

• (I, r,m) |= p iff (π(r,m))(p) = true;

• (I, r,m) |= φ ∧ ψ iff (I, r,m) |= φ and (I, r,m) |= ψ;

• (I, r,m) |= ¬φ iff (I, r,m) 6|= φ;

• (I, r,m) |= Kiφ iff (I, r′,m′) |= φ for all (r′,m′) ∈ Ki(r,m);

• (I, r,m) |= ♦φ iff there exists n such that (I, r, n) |= φ.

As usual, we say that φ is valid in I and write I |= φ if (I, r,m) |= φ for all points

(r,m) in I; similarly, φ is satisfiable in I if (I, r,m) |= φ for some point (r,m)
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in I. We abbreviate ¬Ki¬φ as Piφ. We read Piφ as “(according to agent i) φ is

possible.” Note that (I, r,m) |= Piφ if there exists a point (r′,m′) ∈ Ki(r,m) such

that (I, r′,m′) |= φ.

The systems framework lets us express in a natural way some standard as-

sumptions about systems. For example, we can reason about synchronous systems,

where agents always know the time. Formally, R is synchronous if, for all agents

i and points (r,m) and (r′,m′), if ri(m) = r′i(m
′), then m = m′.

Another standard assumption is that agents have perfect recall. This assump-

tion is implicitly made in almost all system models considered in the security lit-

erature, but is not implicit in the runs-and-systems model. Roughly speaking, an

agent with perfect recall can reconstruct his complete local history. In synchronous

systems, for example, an agent’s local state changes with every tick of the external

clock, so agent i’s having perfect recall implies that the sequence 〈ri(0), . . . , ri(m)〉

must be encoded in ri(m+ 1). To formalize perfect recall, let agent i’s local-state

sequence at the point (r,m) be the sequence of local states she has gone through in

run r up to time m, without consecutive repetitions. Thus, if from time 0 through

time 4 in run r agent i has gone through the sequence 〈si, si, s
′
i, si, si〉 of local states,

where si 6= s′i, then her local-state sequence at (r, 4) is 〈si, s
′
i, si〉. Intuitively, an

agent has perfect recall if her current local state encodes her local-state sequence.

More formally, we say that agent i has perfect recall in system R if, at all points

(r,m) and (r′,m′) in PT (R), if (r′,m′) ∈ Ki(r,m), then agent i has the same

local-state sequence at both (r,m) and (r′,m′). Thus, agent i has perfect recall

if she “remembers” her local-state sequence at all times. It is easy to check that

perfect recall has the following key property: if (r′,m′
1) ∈ Ki(r,m1), then for all

m2 ≤ m1, there exists m′
2 ≤ m′

1 such that (r′,m′
2) ∈ Ki(r,m2). (See [20] for more
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discussion of this definition.)

2.2 Probabilistic multiagent systems

Many real-world systems involve nondeterminism and randomization. Adding

probability to the runs-and-systems framework gives us more power to reason

about such systems. We present two ways of doing so: putting probabilities on

points and putting probabilities on runs.

We first consider putting probabilities on points, using a general approach de-

scribed by Halpern [36]. Intuitively, at any point in time, agents have probabilities

on the current state of the system (including the states of other agents). Accord-

ingly, this approach specifies a probability on points for every agent and every

point. Define a probability assignment PR to be a function that assigns to each

agent i and point (r,m) a probability space

PR(r,m, i) = (Wr,m,i,Fr,m,i, µr,m,i),

where Wr,m,i ⊆ PT (R) is i’s sample space at (r,m) and µr,m,i is a probability

measure defined on the subsets of Wr,m,i in Fr,m,i. (That is, Fr,m,i is a σ-algebra

that defines the measurable subsets of Wr,m,i.) We call a pair (R,PR) a probability

system.

To put probabilities on runs, we begin by assuming that there is some way

to assign a probability measure to the space of runs. (Intuitively, this measure

represents the objective probability with which various execution sequences will

occur.) Define a run-based probability system to be a triple (R,F , µ), where R is

a system, F is a σ-algebra of subsets of R, and µ is a probability measure defined

on F . Note that a run-based probability system requires only one probability
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measure, rather than a probability measure at each point and for each agent. In

practice, such a measure is often relatively easy to come by. In the same way that

a set of runs can be generated by a protocol, a runs-based probability system can

be generated by a probabilistic protocol: the probability of a set of runs sharing

a common prefix can be derived by multiplying the probabilities of the protocol

transitions necessary to generate the prefix (see [36, 44] for further discussion).

Here and throughout the paper, we assume for simplicity that in a run-based

probability system (R,F , µ), F contains all sets of the form R(Ki(r,m)), for all

points (r,m) and all agents i. That is, if a set of runs is generated by an agent’s

local state, it is measurable. We also assume that µ(R(Ki(r,m))) > 0, so that we

can condition on information sets.

We now discuss an approach due to Halpern and Tuttle [44] that is useful for

connection probability systems and run-based probability systems. Given an agent

i and a point (r,m), we would like to derive the probability measure µr,m,i from µ

by conditioning µ on Ki(r,m), the information that i has at the point (r,m). The

problem is that Ki(r,m) is a set of points, not a set of runs, so straightforward

conditioning does not work. To solve this problem, we condition µ on the set of

runs going through Ki(r,m), rather than on Ki(r,m). Given a set U of points, let

R(U) be the set of runs in R going through the points in U :

R(U) , {r ∈ R : (r,m) ∈ U for some m}.

Conditioning is always well-defined, given our assumption that R(Ki(r,m)) has

positive measure.

We can now define a measure µr,m,i on the points in Ki(r,m) as follows. If

S ⊆ R and A ⊆ PT (R), let A(S) be the set of points in A that lie on runs in S;
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that is,

A(S) , {(r′,m′) ∈ A : r′ ∈ S}.

In particular, Ki(r,m)(S) consists of the points in Ki(r,m) that lie on runs in S.

Let Fr,m,i consist of all sets of the form Ki(r,m)(S), where S ∈ F . Then define

µr,m,i(Ki(r,m)(S)) , µ(S |R(Ki(r,m)).

It is easy to check that if U ⊆ Ki(r,m) is measurable with respect with respect to

µr,m,i, then µr,m,i(U) = µ(R(U) |R(Ki(r,m))). We say that the resulting probabil-

ity system (R,PR) is determined by the run-based probability system (R,F , µ),

and call µ the underlying measure. We call a probability system standard if it is

determined by a run-based probability system.

We can also extend the logic of knowledge described in the last section to

probabilistic systems. Define an interpreted probability system I to be a tuple

(R,PR, π), where (R,PR) is a probability system. In an interpreted probability

system we can give semantics to syntactic statements of probability. We are most

interested in formulas of the form Pri(φ) = α (or similar formulas with ≤, >, etc.,

instead of =). Such formulas were given semantics by Fagin, Halpern, and Megiddo

[19]; we follow their approach here. Intuitively, a formula such as Pri(φ) = α is

true at a point (r,m) if, according to µr,m,i, the probability that φ is true is given

by α. More formally, (I, r,m) |= Pri(φ) = α if

µr,m,i({(r
′,m′) ∈ Ki(r,m) : (I, r′,m′) |= φ}) = α.

Similarly, we can give semantics to Pri(φ) ≤ α and Pr(φ) > α, etc., as well as

conditional formulas such as Pr(φ |ψ) = α. Note that although these formulas

talk about probability, they are either true or false at a given state.
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The semantics for a formula such as Pri(φ) implicitly assumes that the set of

points in Ki(r,m) where φ is true is measurable. While there are ways of dealing

with non-measurable sets (see [19]), here we assume that all relevant sets are

measurable. This is certainly true in synchronous standard systems determined

by a a run-based system where all sets of runs are measurable. More generally, it

is true in a probability system (R,PR) where, for all r, m, i, all the sets in the

probability space PR(r,m, i) are measurable.



Chapter 3

Defining Secrecy

3.1 Secrecy in nonprobabilistic systems

3.1.1 Defining secrecy

In this section we give abstract definitions of secrecy for systems described using the

runs-and-systems model. Recall that we use the term “secrecy” in a fairly specific

way: roughly speaking, we define secrecy so as to ensure that low-confidentiality

agents do not know anything about the state of high-confidentiality agents. (Here-

after we use the more concise terms “high” and “low” when describing the con-

fidentiality level associated with inputs, users, and so on.) In Section 3.1.4, we

formalize these intuitions using the epistemic logic of Section 2.1.

To motivate our definitions, we use programs expressed in a simple imperative

programming language. (We define such a language formally in Chapter 6, Sec-

tion 6.2.) We assume that these programs are executed sequentially on a single

machine, and that users with different security clearances can interact with the

machine via channels appropriate to their security level. For example, the com-

mand input x from H prompts the high channel H for an input and stores the

input value in program variable x, while the command output e to L outputs the

value of the expression e on the low channel L.

All the programs that we consider determine systems in an obvious way, once

we decide whether to model the systems synchronously or asynchronously. For

21
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example, in a synchronous system determined by the following program:

output 0 to L;

output 1 to L

the system consists of exactly one run.1 In this run, L’s local state is initially

empty (i.e., 〈 〉) and is then updated with a new output event—where out(L, i)

denotes the output of value i on channel L—at each time step. At time 1, L’s

local state is 〈out(L, 1)〉, and at time 2 it is 〈out(L, 1), out(L, 2)〉. Since there is

no output event at subsequent steps, at time 4, L’s local state is

〈out(L, 1), out(L, 2), , 〉.

L’s local state is different at time 2 and time 4, since L is aware that time has

passed. By way of contrast, one way to translate programs to asynchronous systems

is to model agents’ local states so that they are modified only when input and

output event occurs on channels to which they have access. In an asynchronous

system determined by the program above, L’s state would be unchanged after

time 2.

The strongest notion of secrecy that we consider in this section is the require-

ment that an agent, based on her local state, must not be able to infer anything

about the local state of another agent. To guarantee that an agent i is unable to

rule out any possible local states for another agent j, we require that every possible

local state for j be compatible with every possible local state for i:

Definition 1 Agent j maintains total secrecy with respect to i in system R if, for

all points (r,m) and (r′,m′) in PT (R), Ki(r,m) ∩ Kj(r
′,m′) 6= ∅.

1Though for simplicity we ignore timing variations arising due to blocking input
commands, our system model can easily handle such timing issues.
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Total secrecy is a strong property. For almost any imaginable system, it is,

in fact, too strong to be useful. There are two important respects in which it is

too strong. First, total secrecy is not at all selective about which parts of the

high agent are protected. Second, total secrecy is unreasonably demanding with

respect to issues of time and synchrony. Both of these issues can be handled with

appropriate weakenings of total secrecy, which are now discussed.

3.1.2 Weakening total secrecy using information functions

The first respect in which total secrecy is too strong has to do with the fact

that total secrecy protects everything about the state of the high agent. In some

systems, we might want only some part of the high agent’s state to be kept secret

from the low agent. For example, we might want the high agent to be able to

observe details about the state of the low agent, in which case our definitions are

too strong because they rule out any correlation between the states of the high

and low agents.

To make this more concrete, consider the following program:

input x from L;

output x to H;

output 1 to L

H does not maintain total secrecy with respect to L because after L sees out(L, 1)

he knows that H has already seen L’s first input value as her output. (Note that

in a synchronous setting the final output is irrelevant: L would know that H had

seen L’s input value at the second time step.) If we want to protect only the

input values provided by H, total secrecy is too strong. We may be interested in a

weaker notion of secrecy, which allows L to realize that H knows L’s input value

but still keeps all of the “significant” part of H’s state secret. Rather than trying
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to define “significant,” we characterize significance abstractly using what we call

an “information function.”

Definition 2 A j-information function on R is a function f from PT (R) to

some range that depends only on j’s local state; that is f(r,m) = f(r′,m′) if

rj(m) = r′j(m
′).

Thus, for example, if j’s local state at any point (r,m) includes a list of input and

output operations, f(r,m) could consist of only the output values contained in j’s

local state. Intuitively, f(r,m) is intended to represent that part of j’s local state

that is significant to whomever is doing the reasoning.

Definition 3 If f is a j-information function, agent j maintains total f -secrecy

with respect to i in system R if, for all points (r,m) and values v in the range of

f , Ki(r,m) ∩ f−1(v) 6= ∅ (where f−1(v) is simply the preimage of v, that is, all

points (r,m) such that f(r,m) = v).

Of course, if f(r,m) = rj(m), then f−1(r′j(m
′)) = Kj(r

′,m′), so total secrecy is a

special case of total f -secrecy.

To see how f -secrecy handles the example program above, suppose that we

introduce an information function f that extracts only the input events from H’s

state. Because f(r,m) is always empty, it is easy to see that H maintains total

f -secrecy with respect to L. If our goal is to protect only the input values provided

by H, any program that never reads input values from H is trivially secure.

Total f -secrecy is a special case of nondeducibility, introduced by Suther-

land [87]. Sutherland considers “abstract” systems that are characterized by a

set W of worlds. He focuses on two agents, whose views are represented by infor-

mation functions g and h on W . Sutherland says that no information flows from
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g to h if, for all worlds w,w′ ∈ W , there exists some world w′′ ∈ W such that

g(w′′) = g(w) and h(w′′) = h(w′). This notion is often called nondeducibility (with

respect to g and h) in the literature. To see how total f -secrecy is a special case of

nondeducibility, let W = PT (R), the set of all points of the system. Given a point

(r,m), let g(r,m) = ri(m). Then total f -secrecy is equivalent to nondeducibility

with respect to g and f .

Note that nondeducibility is symmetric: no information flows from g to h iff

no information flows from h to g. Since most standard noninterference properties

focus only on protecting the state of some high agent, symmetry appears to suggest

that if the actions of a high agent are kept secret from a low agent, then the actions

of a low agent must also be kept secret from the high agent. Our definitions help

to clarify this issue. Total secrecy as we have defined it is indeed symmetric: j

maintains total secrecy with respect to i iff i maintains total secrecy with respect

to j. However, total f -secrecy is not symmetric in general. If j maintains total

f -secrecy with respect to i, it may not even make sense to talk about i maintaining

total f -secrecy with respect to j, because f may not be an i-information function.

Thus, although f -secrecy is an instantiation of nondeducibility (with respect to an

appropriate g and h), the symmetry at the level of g and h does not translate to

symmetry at the level of f -secrecy, which is where it matters.

While f -secrecy is useful conceptually, it is essentially a trivial technical gener-

alization of the basic notion of secrecy, because for any agent j and j-information

function f , we can reason about a new agent jf whose local state at any point

(r,m) is rjf (m) = f(rj,m). Therefore, every theorem we prove involving secrecy

holds for f -secrecy as well. For this reason, and to simplify the definitions given in

the remainder of the paper, we ignore information functions and deal only with se-
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crecy of one agent with respect to another. Indeed, all our definitions hold without

change for any agent “created” by identifying an agent with a function on global

states.

3.1.3 Run-based secrecy and synchronous secrecy

The second respect in which total secrecy is too strong involves time. To under-

stand the issue, consider synchronous systems (as defined in Section 2.1). In such

systems, the low agent knows the time and knows that the high agent knows it

too. Thus, the low agent can rule out all high states except those that occur at

the current time. Even in semisynchronous systems, where agents know the time

to within some tolerance ε, total secrecy is impossible, because low agents can rule

out high states that occur only in the distant past or future.

Total secrecy may be an unreasonable condition even in asynchronous systems.

To see this, consider the following program:

input x from H;

output 1 to L

Even though L does not know which value was entered by H, H does not maintain

total secrecy with respect to L in this program simply because L knows, after

seeing his output value, that H has already entered some input value. Indeed,

total secrecy—and also total f -secrecy, for an information function f that extracts

high input values—rules out any program where low output events follow high

input events.

We now consider two distinct ways of resolving this problem. The first way

weakens total secrecy by considering runs instead of points. Total secrecy (of j

with respect to i) says that at all times, agent i must consider all states of j to
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be (currently) possible. A weaker version of total secrecy says that at all times, i

must consider it possible that every possible state of j either occurs at that time,

or at some point in the past or future. We formalize this in the following definition.

Given a set U of points, recall that R(U) is the runs in R going through a point

in U .

Definition 4 Agent j maintains run-based secrecy with respect to j in system R

if, for all points (r,m) and (r′,m′) in PT (R), R(Ki(r,m)) ∩R(Kj(r
′,m′)) 6= ∅.

It is easy to check that j maintains run-based secrecy with respect to j in

system R iff for all points (r,m) and (r′,m′) in PT (R), there exists a run r′′ and

times n and n′ such that r′′i (n) = ri(m) and r′′j (n
′) = r′j(m

′). To relate the formal

definition to its informal motivation, note that every state of j that occurs in the

system has the form r′j(m
′) for some point (r′,m′). Suppose that i’s state is ri(m).

If there exists a point (r′′, n′′) such that r′′i (n
′′) = ri(m) and r′′j (n

′′) = r′j(m
′), agent

i considers it possible that j currently has state r′j(m
′). If instead r′′j (n) = r′j(m

′)

for n〈n′′, then i currently considers it possible that j was in state r′j(m
′) at some

point in the past; similarly, if n > n′′, then i thinks that j could be in state r′j(m
′)

at some point in the future. Note that total secrecy implies run-based secrecy,

but the converse is not necessarily true (as shown in Example 2, in Section A.1

in the appendix). While run-based secrecy is still a very strong security property,

it seems much more reasonable than total secrecy. In particular, H maintains

run-based secrecy with respect to L in the system corresponding to the program

input x from H; output 1 to L—as far as L is concerned, all the runs in this system

look identical. However, run-based secrecy does not hold in systems derived from

the kinds of programs typically used to demonstrate indirect information flows,
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such as
input x from H;

if (x = 0) then

output 0 to L

else

output 1 to L;

where run-based secrecy does not hold because L’s output gives information about

whether H’s input value was equal to 0.

The second way to weaken total secrecy is to relax the requirement that the

low agent cannot rule out any possible high states. We make this formal as follows.

Definition 5 An i-allowability function on R is a function C from PT (R) to

subsets of PT (R) such that Ki(r,m) ⊆ C(r,m) for all (r,m) ∈ PT (R).

Intuitively, PT (R)−C(r,m) is the set of points that i is allowed to “rule out” at the

point (r,m). It seems reasonable to insist that the points that i considers possible

at (r,m) not be ruled out, which is why we require that Ki(r,m) ⊆ C(r,m).

Definition 6 If C is an i-allowability function, then j maintains C-secrecy with

respect to i if, for all points (r,m) ∈ PT (R) and (r′,m′) ∈ C(r,m), we have

Ki(r,m) ∩ Kj(r
′,m′) 6= ∅.

If C(r,m) = PT (R) for all points (r,m) ∈ PT (R), then C-secrecy reduces to

total secrecy. Synchrony can be captured by the allowability function S(r,m) =

{(r′,m) : r′ ∈ R}. Informally, this says that agent i is allowed to know what time

it is. We sometimes call S-secrecy synchronous secrecy. It is easy to see that H

maintains synchronous secrecy with respect to L in the system generated by the

program input x from H; output 1 to L.

In synchronous systems, synchronous secrecy has a simple characterization.
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Proposition 1 Agent j maintains synchronous secrecy with respect to i in a

synchronous system R iff, for all runs r, r′ ∈ R and times m, we have that

Ki(r,m) ∩ Kj(r
′,m) 6= ∅.

Proof: This follows trivially from the definitions. ut

In synchronous input/output trace systems, synchronous secrecy is essentially

equivalent to the standard notion of separability [58]. (Total secrecy can be viewed

as an asynchronous version of separability. See Section 5.1.1 for further discussion

of this issue.) The security literature has typically focused on either synchronous

systems or completely asynchronous systems. One advantage of our framework

is that we can easily model both of these extreme cases, as well as being able

to handle in-between cases, which do not seem to have been considered up to

now. Consider a semisynchronous system where agents know the time to within

a tolerance of ε. At time 5, for example, an agent knows that the true time is in

the interval [5− ε, 5+ ε]. This corresponds to the allowability function SS(r,m) =

{(r′,m′) : |m −m′| ≤ ε}, for the appropriate ε. We believe that any attempt to

define security for semisynchronous systems will require something like allowability

functions.

C-secrecy and run-based secrecy represent two quite different approaches to

weakening total secrecy: allowability functions restrict the set of j-information

sets that i must consider possible, while run-based secrecy focuses on runs rather

than points. Even if we focus on synchronous secrecy, the two notions are distinct.

In systems without perfect recall, for example, we may have synchronous secrecy

without having run-based secrecy, while in asynchronous systems we may have

run-based secrecy without having synchronous secrecy. (See Section A.1 in the

appendix for examples.) However, there are contexts in which the definitions do
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coincide, suggesting that they are capturing some of the same intuitions. Consider,

for example, our definition of synchronous secrecy. Intuitively it might at first

seem that synchronous secrecy goes too far in weakening total secrecy. Informally,

j maintains total secrecy with respect to i if i never learns anything not only about

j’s current state, but also his possible future and future states. Synchronous secrecy

seems only to say that i never learns anything about j’s state at the current time.

However, when agents have perfect recall, it turns out that synchronous secrecy

implies run-based secrecy, thus addressing this concern.

To make this precise for a more general class of allowability functions, we need

the following definition, which captures the intuition that an allowability function

depends only on timing. Given any two runs, we want the allowability function to

map points on the first run to contiguous, nonempty sets of points on the second

run in a way that respects the ordering of points on the first run and covers all

points on the second run.

Definition 7 An allowability function C depends only on timing if it satisfies

the following three conditions: (a) for all runs r, r′ ∈ R, and all times m′, there

exists m such that (r′,m′) ∈ C(r,m); (b) if (r′,m′) ∈ C(r,m), and n ≥ m (resp.

n ≤ m), there exists n′ ≥ m′ (resp. n′ ≤ m′) such that (r′, n′) ∈ C(r, n); (c) if

(r′, n1) ∈ C(r,m), (r′, n2) ∈ C(r,m), and n1 ≤ m′ ≤ n2, then (r′,m′) ∈ C(r,m).

It is easy to check that both synchronous and semi-synchronous allowability func-

tions depend only on timing. We now show that C-secrecy implies run-based

secrecy if C depends only on timing.

Proposition 2 If R is a system where i and j have perfect recall, C depends only

on timing, and j maintains C-secrecy with respect to i, then j maintains run-based
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secrecy with respect to i.

In synchronous systems with perfect recall, synchronous secrecy and run-based

secrecy agree. This reinforces our claim that both definitions are natural, useful

weakenings of total secrecy.

Proposition 3 If R is a synchronous system where both i and j have perfect

recall, then agent j maintains synchronous secrecy with respect to i iff j maintains

run-based secrecy with respect to i.

The requirement in Proposition 3 that both agents have perfect recall is nec-

essary; see Example 1, in the appendix, for details. Without perfect recall, two

things can go wrong. First, if i does not have perfect recall, she might be able

to determine at time n what j’s state is going to be at some future time n′ > n,

but then forget about it by time n′, so that j maintains synchronous secrecy with

respect to i, but not run-based secrecy. Second, if j does not have perfect recall, i

might learn something about j’s state in the past, but j might still maintain syn-

chronous secrecy with respect to i because j has forgotten this information by the

time i learns it. These examples suggest that secrecy is less interesting when agents

can forget facts that they once knew. At any rate, it makes sense to model agents

as if they have perfect recall, since not doing so requires us to trust that agents

will forget facts when we need them to, leading to weaker security guarantees.

3.1.4 Syntactic characterizations of secrecy

Our definitions of secrecy are semantic; they are given in terms of the local states

of agents. As we shall see, it is helpful to reason syntactically about secrecy,

using the logic of knowledge discussed in Section 2.1. Our goal in this section is
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to characterize secrecy in terms of the knowledge—or more precisely, the lack of

knowledge—of the agent with respect to whom secrecy is maintained. To this end,

we show that the state of an agent j is kept secret from an agent i exactly if i does

not know any formulas that depend only on the state of j, or, dually, if i always

thinks that any formula that depends on the state of j is currently possible.

For this characterization, we use the modal logic of knowledge described in

Section 2.1. But first, we need to define what it means for a formula to depend on

the local state of a particular agent. Given an agent j, a formula φ is j-local in an

interpreted system I if, for all points (r,m) and (r′,m′) such that rj(m) = r′j(m
′),

(I, r,m) |= φ iff (I, r′,m′) |= φ. It is easy to check that φ is j-local in I iff

I |= Kjφ ∨Kj¬φ; thus, j-locality can be characterized syntactically. (See [17] for

an introduction to the logic of local propositions.) The notion of j-locality has

another useful semantic characterization:

Proposition 4 A formula φ is j-local in an interpreted system I = (R, π) iff

there exists a set Ω of j-information sets such that (I, r,m) |= φ exactly when

(r,m) ∈
⋃

K∈Ω K.

The following theorem shows that the semantic characterizations of secrecy

given in Section 3.1.1 correspond closely to our intuitions of what secrecy should

mean: agent j maintains secrecy with respect to i precisely if i cannot rule out any

satisfiable facts that depend only on the local state of j.

Theorem 1 Suppose that C is an i-allowability function. Agent j maintains C-

secrecy with respect to agent i in system R iff, for every interpretation π and

point (r,m), if φ is j-local and (I, r′,m′) |= φ for some (r′,m′) ∈ C(r,m), then

(I, r,m) |= Piφ.
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Since total secrecy is just C-secrecy for the allowability function C such that

C(r,m) consists of all point in R, the following corollary, which gives an elegant

syntactic characterization of total secrecy, is immediate.

Corollary 1 Agent j maintains total secrecy with respect to agent i in system

R iff, for every interpretation π, if the formula φ is j-local and satisfiable in

I = (R, π), then I |= Piφ.

Corollary 1 says that total secrecy requires i not to know any j-local fact that

is not valid in I. A similar result holds for synchronous secrecy. For brevity, and

because we prove more general results in later sections, we ignore the details here.

We can also give a similar syntactic characterization of run-based secrecy. For

j to maintain total secrecy with respect to i, if φ is j-local, it is always necessary

for i to think that φ was possible. For run-based secrecy, we require only that i

think that φ is possible sometime in the current run. Recall that the formula ♦φ

means “φ is true at some point in the current run.”

Theorem 2 Agent j maintains run-based secrecy with respect to agent i in system

R iff, for every interpretation π, if φ is j-local and satisfiable in I = (R, π), then

I |= Pi♦φ.

The results of this section show that secrecy has a syntactic characterization

that is equivalent to the semantic characterization. We speculate that this char-

acterization may be relevant to natural generalizations of secrecy involving de-

classification and resource-bounded agents. With declassification [95, 65], system

administrators may deem that some facts about high users may be leaked to low

users. If a secrecy policy corresponds to a set of formulas that must be kept se-

cret from the low agent, it seems likely that declassification could be modeled by
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specifying particular formulas to be removed from the set. Another generalization

of secrecy involves replacing knowledge by a more computational notion such as

algorithmic knowledge [20, 42]. Recall that the definition of knowledge described

in Section 2.1 suffers from the logical omniscience problem: agents know all tau-

tologies and know all logical consequences of their knowledge [20]. In the context

of security, it may not matter that an agent with unbounded computational re-

sources can factor and decrypt a message, so long as resource-bounded agents

cannot decrypt the message. It would be interesting to define secrecy with respect

to resource-bounded agents by requiring only that agents do not algorithmically

know various facts.

3.2 Secrecy in probabilistic systems

The definitions of secrecy that we have considered up to now are possibilistic; they

consider only whether or not an event is possible. They thus cannot capture what

seem like rather serious leakages of information. As a motivating example, consider

a system R with two agents Alice and Bob, who we think of as sitting at separate

computer terminals. Suppose that L is a language with n words. At time 1, Bob

inputs a string x ∈ L chosen uniformly at random. At time 2, with probability

1− ε, the system outputs x directly to Alice’s terminal. However, with probability

ε, the system is struck by a cosmic ray as Bob’s input is transmitted to Alice,

and in this case the system outputs a random string from L. (Bob receives no

information about what Alice sees.) Thus, there are n(n+ 1) possible runs in this

system: n runs where no cosmic ray hits, and n2 runs where the cosmic ray hits.

Moreover, it is immediate that Bob maintains (possibilistic) synchronous secrecy

with respect to Alice even though, with very high probability, Alice sees exactly
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what Bob’s input was.

Although this example may seem contrived, it is easy to implement in a pro-

gramming language that includes operators for randomization. For example, sup-

pose that we extend the input/output language from the last section to include an

infix operator p8, where the command c0 p8 c1 executes c0 with probability p and

c1 with probability 1− p, and an operator rand that returns one of the n words in

the language L with uniform probability. The following program implements the

cosmic-ray system:

input w from B;

{output rand() to A ε8 output w to A}

To reason about the unwanted information flow in this example, we need to add

probability to the framework. We can do that by putting an obvious probability

measure on the runs in R:

• for each x ∈ L, the run where Bob inputs x and no cosmic ray hits (so that

Alice sees x) gets probability (1 − ε)/n.

• for each pair (x, y) ∈ L × L, the run where the cosmic ray hits, Bob inputs

x, and Alice sees y gets probability ε/n2.

If Alice sees x, her posterior probability that Bob’s input was x is

PrAlice(Bob typed x |Alice sees x) =
ε+ n− nε

n
= 1 −

n− 1

n
ε.

If Alice sees x, her posterior probability that Bob’s input was y 6= x is

PrAlice(Bob typed x |Alice sees y) =
ε

n
.

Thus, if ε > 0, even though Alice never learns with certainty that Bob’s input was

x, her probability that it was x rises from 1/n to almost 1 as soon as she sees an x.
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In this section we introduce definitions of probabilistic secrecy. The definitions

and the technical results we obtain closely resemble the definitions and results of

the previous two sections. This is no coincidence. As we show in Section 3.3,

probabilistic and possibilistic secrecy are instances of a definition of plausibilistic

secrecy for which similar results can be proved in more generality.

3.2.1 Defining probabilistic secrecy

To reason about probabilistic secrecy we employ the probabilistic systems defined

in Section 2.2. We can give definitions of secrecy both for probability systems (with

probabilities on points) and for run-based probability systems (with probabilities

on runs).

Given a probability system, we can give relatively straightforward definitions of

probabilistic total secrecy and synchronous secrecy. Rather than requiring that an

agent i think that all states of another j are possible, we require that all of those

states be measurable and equally likely according to i’s subjective probability

measure.

Definition 8 Agent j maintains probabilistic total secrecy with respect to agent

i in (R,PR) if, for all points (r,m), (r′,m′), and (r′′,m′′) in PT (R), we have

Kj(r
′′,m′′) ∩ Ki(r,m) ∈ Fr,m,i, Kj(r

′′,m′′) ∩ Ki(r
′,m′) ∈ Fr′,m′,i, and

µr,m,i(Kj(r
′′,m′′) ∩ Ki(r,m)) = µr′,m′,i(Kj(r

′′,m′′) ∩ Ki(r
′,m′)).

Probabilistic total secrecy is a straightforward extension of total secrecy. In-

deed, if for all points (r,m) we have µr,m,i({(r,m)}) > 0, then probabilistic total

secrecy implies total secrecy (as in Definition 1).
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Proposition 5 If (R,PR) is a probability system such that µr,m,i({(r,m)}) > 0

for all points (r,m) and j maintains probabilistic total secrecy with respect to i in

(R,PR), then j also maintains total secrecy with respect to i in R.

Like total secrecy, probabilistic total secrecy is an unrealistic requirement in

practice, and cannot be achieved in synchronous systems. To make matters worse,

the sets Kj(r
′′,m′′) ∩ Ki(r,m) are typically not measurable according to what is

perhaps the most common approach for defining PR, as we show in the next

section. Thus, even in completely asynchronous systems, total secrecy is usually

impossible to achieve for measurability reasons alone. Fortunately, the obvious

probabilistic analogue of synchronous secrecy is a more reasonable condition.

Definition 9 Agent j maintains probabilistic synchronous secrecy with respect to

agent i in (R,PR) if, for all runs r, r′, r′′ and all times m, we have Kj(r
′′,m) ∩

Ki(r,m) ∈ Fr,m,i, Kj(r
′′,m) ∩ Ki(r

′,m) ∈ Fr′,m,i, and

µr,m,i(Kj(r
′′,m) ∩ Ki(r,m)) = µr′,m,i(Kj(r

′′,m) ∩ Ki(r
′,m)).

Note that if we set up the cosmic-ray system of the previous section as a probability

system in such a way that Alice’s probability on points reflects the posterior prob-

abilities we described for the system, it is immediate that Bob does not maintain

probabilistic synchronous secrecy with respect to Alice.

We now consider definitions of probabilistic secrecy for run-based probability

systems. Recall from Section 3.1.1 that run-based total secrecy requires that, for

all points (r,m) and (r′,m′), we have R(Ki(r,m)) ∩ R(Kj(r
′,m′)) 6= ∅. In other

words, run-based total secrecy is a property based on what can happen during runs,

rather than points. In a run-based probability system where all information sets

have positive measure, it is easy to see that this is equivalent to the requirement
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that µ(R(Kj(r
′,m′)) |R(Ki(r,m))) > 0. We strengthen run-based total secrecy by

requiring that these probabilities be equal, for all i-information sets.

Definition 10 Agent j maintains run-based probabilistic secrecy with respect to

i in (R,F , µ) if for any three points (r,m), (r′,m′), (r′′,m′′) ∈ PT (R),

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r

′′,m′′)) |R(Ki(r
′,m′))).

The probabilities for the cosmic-ray system were defined on sets of runs. More-

over, facts such as “Alice sees x” and “Bob typed y” correspond to information

sets, exactly as in the definition of run-based probabilistic secrecy. It is easy to

check that Bob does not maintain run-based probabilistic secrecy with respect to

Alice.

In Section 3.2.2, we consider the connection between probability measures on

points and on runs, and the corresponding connection between probabilistic se-

crecy and run-based probabilistic secrecy. For the remainder of this section, we

consider symmetry in the context of probabilistic secrecy. In Section 3.1.1, we

mentioned that our definitions of secrecy were symmetric in terms of the agents i

and j. Perhaps surprisingly, probabilistic secrecy is also a symmetric condition, at

least in most cases of interest. This follows from a deeper fact: under reasonable

assumptions, secrecy (of j with respect to i) implies the probabilistic independence

of i-information sets and j-information sets. (See Lemma 1 in the appendix for

more details.)

Consider probabilities on points: if there is no connection whatsoever between

PR(r,m, i) and PR(r,m, j) in a probability system (R,PR), there is obviously

no reason to expect secrecy to be symmetric. However, if we assume that the

probabilities of i and j at (r,m) are derived from a single common probability
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measure by conditioning, then symmetry follows. This assumption, which holds

for the probability systems we will consider here (and is standard in the economics

literature [64]), is formalized in the next definition.

Definition 11 A probability system (R,PR) satisfies the common prior assump-

tion if there exists a probability space (PT (R),Fcp , µcp) such that for all agents i

and points (r,m) ∈ PT (R), we have Ki(r,m) ∈ FW , µcp(Ki(r,m)) > 0, and

PRi(r,m) = (Ki(r,m), {U ∩Ki(r,m) |U ∈ FW}, µcp | Ki(r,m)).2

In probability systems that satisfy the common prior assumption, probabilistic

secrecy is symmetric.

Proposition 6 If (R,PR) is a probability system (resp., synchronous probability

system) that satisfies the common prior assumption with prior probability µcp, the

following are equivalent:

(a) Agent j maintains probabilistic total (resp., synchronous) secrecy with respect

to i.

(b) Agent i maintains probabilistic total (resp., synchronous) secrecy with respect

to j.

(c) For all points (r,m) and (r′,m′),

µcp(Kj(r
′,m′) | Ki(r,m)) = µcp(Kj(r

′,m′))

(resp., for all points (r,m) and (r′,m),

µcp(Kj(r
′,m) | Ki(r,m)) = µcp(Kj(r

′,m) | PT (m)),

2Actually, it is more standard in the economics literature not to require that
µcp(Ki(r,m)) > 0. No requirements are placed on µr,m,i if µcp(Ki(r,m)) = 0. See
[35] for a discussion of this issue.
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where PT (m) is the set of points occurring at time m; that is, the events

Ki(r,m) and Kj(r
′,m) are conditionally independent with respect to µcp,

given that the time is m).

In run-based probability systems there is a single measure µ that is independent

of the agents, and we have symmetry provided that the system is synchronous or

both agents have perfect recall. (If neither condition holds, secrecy may not be

symmetric, as illustrated by Example 2 in the appendix.)

Proposition 7 If (R,F , µ) is a run-based probability system that is either syn-

chronous or one where agents i and j both have perfect recall, then the following

are equivalent:

(a) Agent j maintains run-based probabilistic secrecy with respect to i.

(b) Agent i maintains run-based probabilistic secrecy with respect to j.

(c) For all points (r,m), (r′,m′) ∈ PT (R), R(Ki(r,m)) and R(Kj(r
′,m′)) are

probabilistically independent with respect to µ.

3.2.2 Secrecy in standard probability systems

In Section 2.2 we defined standard probability systems to be those that are de-

termined by run-based probability systems using the approach of Halpern and

Tuttle [44]. Note that synchronous standard probability systems satisfy the com-

mon prior assumption, as defined in the previous section. If we assume that all

runs are measurable, then we can simply take µcp(r,m) = µ(r)/2m+1. This ensures

that the time m points have the same relative probability as the runs, which is

exactly what is needed. More generally, if PT (m) is the set of time m points and S
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is a measurable subset of R, we take µcp(PT (m)(S)) = µ(S)/2m+1. It follows from

Proposition 6 that probabilistic synchronous secrecy is symmetric in synchronous

standard systems.

In synchronous standard systems with perfect recall, probabilistic secrecy and

run-based probabilistic secrecy coincide. (We remark that Example 1 shows that

the requirement of perfect recall is necessary.) This provides further evidence that

our notion of synchronous secrecy is appropriate in synchronous systems.

Proposition 8 If (R,PR) is the standard system determined by the synchronous

run-based probability system (R,F , µ), and agents i and j have perfect recall in R,

then agent j maintains run-based probabilistic secrecy with respect to i in (R,F , µ)

iff j maintains probabilistic synchronous secrecy with respect to i in (R,PR).

3.2.3 Characterizing probabilistic secrecy

We now demonstrate that we can characterize probabilistic secrecy syntactically,

as in the nonprobabilistic case, using the definition of an interpreted probability

system given in Section 2.2.

The first result shows that we can characterize probabilistic total and syn-

chronous secrecy.

Theorem 3 (a) If (R,PR) is a probabilistic system, then agent j maintains

probabilistic total secrecy with respect to agent i iff, for every interpretation

π and formula φ that is j-local in I = (R,PR, π), there exists a constant σ

such that I |= Pri(φ) = σ.

(b) If (R,PR) is a synchronous probabilistic system, then agent j maintains

probabilistic synchronous secrecy with respect to agent i iff, for every inter-
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pretation π, time m, and formula φ that is j-local in I = (R,PR, π), there

exists a constant σm such that (I, r,m) |= Pri(φ) = σm for all runs r ∈ R.

We can also characterize run-based secrecy in standard systems using the ♦

operator. For this characterization, we need the additional assumption of perfect

recall.

Theorem 4 If (R,PR) is a standard probability system where agent j has perfect

recall, then agent j maintains run-based probabilistic secrecy with respect to agent i

iff, for every interpretation π and every formula φ that is j-local in I = (R,PR, π),

there exists a constant σ such that I |= Pri(♦φ) = σ.

Example 3 demonstrates that the assumption of perfect recall is necessary in The-

orem 4 and that synchrony alone does not suffice.

3.2.4 Secrecy in adversarial systems

It is easy to capture our motivating cosmic-ray system example using a synchronous

standard system because we assumed a probability on the set of runs. Furthermore,

it is not hard to show that Bob does not maintain synchronous secrecy with respect

to Alice in this system. However, there is an important and arguably inappropriate

assumption that was made when we modeled the cosmic-ray system, namely, that

we were given the probability with which Bob inputs various strings. While we took

that probability to be uniform, it was not necessary to do so: any other probability

distribution would have served to make our point. The critical assumption was that

there is some well-defined distribution that is known to the modeler. However, in

many cases the probability distribution is not known. In the cosmic-ray example,

if we think of the strings as words in natural language, it may not be reasonable to
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view all strings as equally likely. Moreover, the probability of a string may depend

on the speaker: it is unlikely that a teenager would have the same distribution

as an adult, or that people having a technical discussion would have the same

distribution as people discussing a movie.

There are many settings in which it makes sense to reason about the nonde-

terminism of a system in terms of an initial nondeterministic step followed by a

sequence of deterministic or probabilistic steps. The nondeterministic step could

determine the choice of speaker, the adversary’s protocol, or the input to a proba-

bilistic protocol. Indeed, it has been argued [70, 90] that any setting where there is

a mix of nondeterministic, probabilistic, and deterministic moves can be reduced

to one where there is an initial nondeterministic move followed by probabilistic or

deterministic moves. In such a setting, we do not have one probability distribution

over the runs in a system. Rather, we can partition the set of runs according to

the nondeterministic initial step, and then use a separate probability distribution

for the set of runs corresponding to each initial step. For example, consider a set-

ting with a single agent and an adversary. Suppose that the agent uses a protocol

p and the adversary uses one of a set {q1, . . . , qn} of protocols. The system R

consists of all the runs generated by running (p, qk) for k = 1, . . . , n. R can then

be partitioned into n subsets D1, . . . , Dn, where Dj consists the runs of the joint

protocol (p, qj). While we may not want to assume a probability on how likely the

adversary is to use qj, typically there is a natural probability distribution on each

set Dj. Note that we can capture uncertainty about a speaker’s distribution over

natural language strings in the same way; each protocol corresponds to a different

speaker’s “string-production algorithm.”

Situations where there is a nondeterministic choice followed by a sequence of
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probabilistic or deterministic choices can be characterized by an adversarial prob-

ability system, which is a tuple (R,D,∆), where R is a system, D is a count-

able partition of R, and ∆ , {(D,FD, µD) : D ∈ D} is a set of probability

spaces, where µD is a probability measure on the σ-algebra FD (on D ∈ D) such

that, for all agents i, points (r,m), and cells D, R(Ki(r,m)) ∩ D ∈ FD and, if

R(Ki(r,m)) ∩D 6= ∅, then µD(R(Ki(r,m))) > 0.3

There are several ways of viewing the cosmic-ray example as an adversarial

probability system. If we view the input as a nondeterministic choice, then we can

take D(x) to consist of all runs where the input is x, and let D , {D(x) : x ∈ L}.

The measure µx on D(x) is obvious: the one run in D(x) where the cosmic ray

does not strike gets probability 1 − ε; the remaining n runs each get probability

ε/n. Note that we can assign a probability on D(x) without assuming anything

about Bob’s input distribution. Alternatively, we can assume there are k “types”

of agents (child, teenager, adult, etc.), each with their own distribution over inputs.

Then the initial nondeterministic choice is the type of agent. Thus, the set of runs

is partitioned into sets Dj, j = 1, . . . , k. We assume that agents of type j generate

inputs according to probability Prj. In each set Dj, there is one run where Bob

inputs x and the cosmic ray does not strike; it has probability Prj(x)(1−ε). There

are n runs where Bob inputs x and the cosmic ray strikes; each gets probability

Prj(x)ε/n.

For another example of a system where initial nondeterministic choices play an

important role, consider the following program, an insecure one-time pad imple-

3We actually should have written µD(R(Ki(r,m)) ∩ D) rather than
µD(R(Ki(r,m))) here, since R(Ki(r,m)) is not necessarily in FD (and is certainly
not in FD if R(Ki(r,m)) is not a subset of D). For brevity we shall continue to
abuse notation and write µD(U) as shorthand for µD(U ∩D).
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mentation first described by Wittbold and Johnson [93]:

P1 : while (true) do

x := 0 0.58 x := 1;

output x to H;

input y from H;

output x⊕ y to L

(We assume that H can input only 0 and 1 and that ⊕ is the exclusive-or operator.)

Note that, in every iteration of this loop, H can transmit a bit b to L by choosing

x ⊕ b as his input value. More generally, given a bit string z = z1 . . . zk, H can

transmit z to L by giving xi ⊕ zi as input at the ith iteration (where xi is H’s

output value). Thus, even though H’s input values are kept completely secret from

L—they are encrypted with a one-time pad that L cannot see—H can transmit

arbitrary messages to L. Clearly there is a sense in which Program P1 is completely

insecure.

To model the system generated by P1 in a way that demonstrates the lack of

secrecy, we need somehow to reason about the “intention” of H. One way to do so

is to assume that a string z is encoded in H’s initial local state and that H follows

the protocol suggested above, choosing the input value xi ⊕ zi. If fstring is an H-

information function that extracts the string from H’s local state, then requiring

H to maintain some form of fstring -secrecy with respect to L would disallow the

information leak in the program above.

Although it may seem strange to be concerned about preserving the secrecy

of an agent who is actively attempting to transmit secret information, this turns

out to be a reasonable way to capture threats such as “rogue agents” or Trojan-

horse programs whose goal is to leak confidential information to public users. Such

a threat model has been the motivation for many definitions of noninterference.

Intuitively, an agent j can interfere with another agent i if i’s state might depend
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on what j does. Though some papers have suggested otherwise [56], we claim that

nondeducibility-based definitions of secrecy provide a sensible way to reason about

noninterference. If i’s state depends on what j does, a reasonable model of j’s

local state should include information about the actions she can take that affect i.

When this is the case, i’s local state is correlated with j’s local state if j interferes

with i, so j preserves secrecy with respect to i only if j does not interfere with i.

We can identify an adversarial probability system with a set of run-based prob-

ability systems, by viewing the measures in ∆ as constraints on a single measure

on R. Let FD , σ(
⋃
D∈D FD), the σ-algebra generated by the measurable sets

of the probability spaces of ∆. (It is straightforward to check that U ∈ FD iff

U =
⋃
D∈D UD, where UD ∈ FD.) Let M(∆) consist of all measures µ on F

such that (1) for all D ∈ D, if µ(D) > 0 then µ |D = µD (i.e., µ conditioned

on D is µD) and (2) for all agents i and points (r,m), there exists some cell D

such that R(Ki(r,m)) ∩D 6= ∅ and µ(D) > 0. It follows from these requirements

and our assumption that if R(Ki(r,m)) ∩ D 6= ∅ then µD(R(Ki(r,m) ∩ D) > 0

that µ(R(Ki(r,m)) > 0 for all agents i and points (r,m). We can thus associate

(R,D,∆) with the set of run-based probability systems (R,FD, µ), for µ ∈ M(∆).

Rather than defining secrecy in adversarial systems directly, we give a slightly

more general definition. Define a generalized run-based probability system to be

a tuple (R,F ,M), where M is a set of probability measures on the σ-algebra

F . Similarly, define a generalized probability system to be a tuple (R,PR), where

PR is a set of probability assignments. We can define secrecy in generalized (run-

based) probability systems by considering secrecy with respect to each probability

measure/probability assignment.

Definition 12 Agent j maintains probabilistic total (resp. synchronous) secrecy
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with respect to agent i in the generalized probabilistic system (R,PR) if, for all

PR ∈ PR, j maintains probabilistic total (resp. synchronous) secrecy with respect

to i in (R,PR). Agent j maintains run-based secrecy with respect to agent i

in the generalized probabilistic run-based system (R,F ,M) if, for all µ ∈ M, j

maintains run-based probabilistic secrecy with respect to i in (R,F , µ).

It is now straightforward to define secrecy in an adversarial systems by reducing

it to a generalized probabilistic system. Agent j maintains run-based probabilis-

tic secrecy with respect to i in (R,D,∆) if j maintains run-based probabilistic

secrecy with respect to i in (R,FD,M(∆)). Similarly, agent j maintains total

(resp. synchronous) secrecy with respect to i in (R,D,∆) if j maintains total

(resp. synchronous) secrecy with respect to i in (R,PR), where PR consists of

all the probability assignments determined by the run-based probability systems

(R,FD, µ) for µ ∈ M(∆). A straightforward analogue of Proposition 7 holds for

adversarial systems; again, secrecy is symmetric in the presence of assumptions

such as perfect recall or synchrony.

3.2.5 Secrecy and evidence

Secrecy in adversarial probability systems turns out to be closely related to the

notion of evidence in hypothesis testing (see [50] for a good overview of the litera-

ture). Consider this simple example: someone gives you a coin, which may be fair

or may be double-headed. You have no idea what the probability is that the coin

is fair, and it may be exceedingly unlikely that the coin is double-headed. But

suppose you then observe that the coin lands heads on each of 1,000 consecutive

tosses. Clearly this observation provides strong evidence in favor of the coin being

double-headed.
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In this example there are two hypotheses: that the coin is fair and that it is

double-headed. Each hypothesis places a probability on the space of observations.

In particular, the probability of seeing 1000 heads if the coin is fair is 1/21000, and

the probability of seeing 1000 heads if the coin is double-headed is 1. While we can

talk of an observation being more or less likely with respect to each hypothesis,

making an observation does not tell us how likely an hypothesis is. No matter how

many heads we see, we do not know the probability that the coin is double-headed

unless we have the prior probability of the coin being double headed. In fact, a

straightforward computation using Bayes’ Rule shows that if the prior probability

of the coin being double-headed is α, then the probability of the coin being double-

headed after seeing 1000 heads is α
α+((1−α)/21000 .

In an adversarial probability system (R,D,∆), the initial nondeterministic

choice plays the role of an hypothesis. For each D ∈ D, µD can be thought of as

placing a probability on observations, given that choice D is made. These observa-

tions then give evidence about the choice made. Agent i does not obtain evidence

about which choice was made if the probability of any sequence of observations is

the same for all choices.

Definition 13 Agent i obtains no evidence for the initial choice in the adversarial

probability system (R,D,∆) if, for all D,D′ ∈ D and all points (r,m) such that

R(Ki(r,m)) ∩D 6= ∅ and R(Ki(r,m)) ∩D′ 6= ∅, we have

µD(R(Ki(r,m))) = µD′(R(Ki(r,m))).

Roughly speaking, i obtains no evidence for initial choices if the initial choices

(other than i’s own choice) are all secret. The restriction to cells such that

R(Ki(r,m)) ∩ D 6= ∅ and R(Ki(r,m)) ∩ D′ 6= ∅ ensures that D and D′ are both
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compatible with i’s initial choice.

To relate this notion to secrecy, we consider adversarial probability systems

with a little more structure. Suppose that for each agent i = 1, . . . , n, there is a

set INIT i of possible initial choices. (For example, INIT i could consist of a set of

possible protocols or a set of possible initial inputs.) Let INIT = INIT 1 × · · · ×

INIT n consist of all tuples of initial choices. For yi ∈ INIT i, let Dyi
consist of

all runs in R where agent i’s initial choice is yi; if y = (y1, . . . , yn) ∈ INIT , then

Dy = ∩ni=1Dyi
consists of all runs where the initial choices are characterized by

y. Let D = {Dy : y ∈ INIT}. To model the fact that i is aware of his initial

choice, we require that for all points (r,m) and agents i, there exists y such that

R(Ki(r,m)) ⊆ Dy. If D has this form and each agent i is aware of his initial choice,

we call (R,D,∆) the adversarial system determined by INIT .

If i obtains no evidence for the initial choice, she cannot learn anything about

the initial choices of other agents. To make this precise in our framework, let

MINIT
i (∆) consist of the measures µ ∈ M(∆) such that for all cells D(y1,...,yn), we

have µ(D(y1,...,yn)) = µ(Dyi
) ·µ(∩j 6=iDyj

), that is, such that the initial choices made

by agent i are independent of the choices made by other agents. Intuitively, if the

choices of i and the other agents are correlated, i learns something about the other

agents’ choices simply by making his own choice. We want to rule out such situ-

ations. Note that because all the information sets have positive probability (with

respect to all µ ∈ M(∆)) and, for all i, there exists an information set Ki(r,m)

such that Dyi
⊇ R(Ki(r,m)), the sets Dyi

must also have positive probability. It

follows that INIT and D must be countable.

Given i, let i− denote the “group agent” consisting of all agents other than i.

(In particular, if the system consists of only two agents, then i− is the agent other
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than i.) The local state of i− is just the tuple of local states of all the agents other

than i. Let fi− be the i−-information function that maps a global state to the

tuple of (i−)’s initial choice. As we observed in Section 3.1.1, our definitions apply

without change to new agents that we “create” by identifying them with functions

on global states. In particular, our definitions apply to i−.

Theorem 5 Let (R,D,∆) be the adversarial probability system determined by

INIT and suppose that R is either synchronous or a system where i has per-

fect recall. Agent i obtains no evidence for the initial choice in (R,D,∆) iff agent

i− maintains generalized run-based probabilistic fi−-secrecy with respect to i in

(R,MINIT
i (∆)).

The assumption of either synchrony or perfect recall is necessary because the

proof relies on the symmetry of run-based secrecy (as established by Proposition 7).

We do not need to assume perfect recall for agent i− because the theorem deals

with fi−-secrecy and, on every run, fi− is constant. It therefore follows that the

“agent” associated with fi− (in the sense described in Section 3.1.1) has perfect

recall even if i− does not.

Thinking in terms of evidence is often simpler than thinking in terms of run-

based probabilistic secrecy. Moreover, the evidence-based definition of secrecy

is well-defined even when the set INIT of initial choices is uncountable. The

connection between evidence and secrecy is particularly relevant when it comes to

relating our work to that of Gray and Syverson [32]; see Section 5.1.2.
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3.3 Plausibilistic secrecy

So far, we have given definitions of secrecy for nonprobabilistic systems, for prob-

ability systems (where uncertainty is represented by a single probability measure),

and for generalized probability systems (where uncertainty is represented by a set

of probability measures). All of these definitions turn out to be special cases of

secrecy with respect to a general representation of uncertainty called a plausibility

measure [26, 27]. By giving a general definition, we can focus on the essential fea-

tures of all the definitions, as well as point the way to defining notions of secrecy

with respect to other representations of uncertainty that may be useful in practice.

The definitions of plausibility measures and plausibility spaces presented here

are adapted from previous work [26, 27, 34, 36]. Our primary contributions are

definitions of plausibilistic secrecy, as well as generalizations of several of the results

described in earlier sections of this chapter.

Recall that a probability space is a tuple (W,F , µ), where W is a set of worlds,

F is an algebra of measurable subsets of W , and µ maps sets in F to elements

of [0, 1] such that the axioms of probability are satisfied. A plausibility space is

a direct generalization of a probability space. We simply replace the probability

measure µ with a plausibility measure Pl, which maps from sets in F to elements of

an arbitrary partially ordered set. If Pl(A) ≤ Pl(B), then B is at least as plausible

as A. Formally, a plausibility space is a tuple (W,F ,D,Pl), where D is a domain

of plausibility values partially ordered by a relation ≤D, and where Pl maps from

sets in F to elements of D in such a way that if U ⊆ V , then Pl(U) ≤D Pl(V ).

We assume that D contains elements top and bottom, denoted >D and ⊥D, such

that Pl(W ) = >D and Pl(∅) = ⊥D.

As shown in [26, 36], all standard representations of uncertainty can be viewed
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as instances of plausibility measures. We consider a few examples here that will

be relevant to our discussion:

• It is straightforward to see that a probability measure µ on a space W is also

a plausibility measure by taking D = [0, 1], Pl = µ, and ≤D=≤.

• We can capture the notion of “possibility” using the trivial plausibility mea-

sure Pltriv that assigns the empty set plausibility 0 and all other sets plau-

sibility 1. That is, D = {0, 1}, ≤D=≤, Pltriv(∅) = 0, and Pltriv(U) = 1 if

U 6= ∅. (Intuitively, an event is possible if there is some world in which it

occurs.)

• A set M of probability measures on a space W can be viewed as a sin-

gle plausibility measure. In the special case where M is a finite set, say

M = {µ1, . . . , µn}, we can take DM to consist of n-tuples in [0, 1]n, with

the pointwise ordering, and define PlM(U) , (µ1(U), . . . , µn(U)). Clearly

PlM(∅) = (0, . . . , 0) and PlM(W ) = (1, . . . , 1), so ⊥DM
= (0, . . . , 0) and

>DM
= (1, . . . , 1). If M is infinite, we consider a generalization of this ap-

proach. Let DM consist of all functions from M to [0, 1]. The pointwise

order on functions gives a partial order on DM; thus, ⊥DM
is the constant

function 0, and >DM
is the constant function 1. Define the plausibility mea-

sure PlM by taking PlM(U) to be the function fU such that fU(µ) = µ(U),

for all µ ∈ M.

We can define secrecy using plausibility measures by direct analogy with the

probabilistic case. Given a system R, define a plausibility assignment PL on R

to be a function that assigns to each agent i and point (r,m) a plausibility space

(Wr,m,i,Fr,m,i,Plr,m,i); define a plausiblity system to be a pair (R,PL), where PL
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is a plausibility assignment on R. We obtain definitions of total plausibilistic

secrecy and synchronous plausibilistic secrecy by simply replacing “probability”

by “plausibility” in Definitions 8 and 9.

Given a plausibility measure Pl on a system R, we would like to define run-

based plausibilistic secrecy and repeat the Halpern-Tuttle construction to generate

standard plausibilistic systems. To do this, we need a notion of conditional plau-

sibility. To motivate the definitions to come, we start by describing conditional

probability spaces. The essential idea behind conditional probability spaces, which

go back to Popper [69] and de Finetti [12], is to treat conditional probability, rather

than unconditional probability, as the primitive notion. A conditional probability

measure µ takes two arguments V and U ; µ(V, U) is generally written µ(V |U).

Formally, a conditional probability space is a tuple (W,F ,F ′, µ) such that F is a

σ-algebra over W , F ′ is a nonempty subset of F that is closed under supersets

in F (so that if U ∈ F ′, U ⊆ V , and V ∈ F , then V ∈ F ′), the domain of µ is

F × F ′, and the following conditions are satisfied:

• µ(U |U) = 1 if U ∈ F ′.

• if U ∈ F ′ and V1, V2, V3, . . . are pairwise disjoint elements of F , then

µ(∪∞
i=1Vi |U) =

∞∑

i=1

µ(Vi |U);

• µ(U1 ∩ U2 |U3) = µ(U1 |U2 ∩ U3) · µ(U2 |U3) if U1 ∈ F and U2 ∩ U3 ∈ F ′.

The first two requirements guarantee that, for each fixed U ∈ F ′, µ(· |U) is an

unconditional probability measure. The last requirement guarantees that the var-

ious conditional probability measures “fit together.” As is standard, we identify

unconditional probability with conditioning on the whole space, and write Pr(U)

as an abbreviation for Pr(U |W ).
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Given an unconditional probability space (W,F , µ), we immediately obtain a

conditional probability space by taking F ′ to consist of all sets U such that µ(U) 6=

0 and defining conditional probability in the standard way. However, starting with

conditional probability is more general in the sense that it is possible to extend

an unconditional probability space to a conditional probability space where F ′

contains sets U such that µ(U) = 0. In other words, there exist conditional

probability spaces (W,F ,F ′, µ) such that µ(U |W ) = 0 for some U ∈ F ′. This

generality is useful for reasoning about secrecy, because (as we shall see) it is

sometimes useful to be able to condition on sets that have a probability of 0.

To generalize conditional probability to the plausibilistic setting, we need to

define operators ⊕ and ⊗ that act as analogues of + and × for probability; these

operators add useful algebraic structure to the plausibility spaces we consider. We

extend the notion of an algebraic plausibility spaces [26, 34, 36] to allow an analogue

of countable additivity. We briefly sketch the relevant details here.

A countably-additive algebraic conditional plausibility space (cacps) is a tuple

(W,F ,F ′,Pl) such that

• F is a σ-algebra of subsets of W ;

• F ′ is a nonempty subset of F that is closed under supersets in F ;

• there is a partially-ordered domain D such that, for each V ∈ F ′, Pl(· |V ) is

a plausibility measure on (W,F) with range D (so, intuitively, the events in

F ′ are the ones for which conditioning is defined); and

• there are functions ⊕ : D∞ → D and ⊗ : D × D → D such that:

– if U ∈ F ′, V1, V2, . . ., are pairwise disjoint elements of F , and J is some
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subset of {1, 2, 3, . . .} such that Pl(Vi) = ⊥ exactly when i ∈ J , then

Pl(∪∞
i=1(Vi |U)) = ⊕i/∈JPl(Vi |U).

– if U1, U2, U3 ∈ F and U2 ∩ U3 ∈ F ′, then

Pl(U1 ∩ U2 |U3) = Pl(U1 |U2 ∩ U3) ⊗ Pl(U2 |U3).

– ⊗ distributes over ⊕, more precisely, a⊗ (⊕∞
i=1bi) = ⊕∞

i=1(a⊗ bi) if

∗ (a, bi), (a,⊕
∞
i=1bi) ∈ Dom(⊗) and

∗ (b1, b2, . . .), (a⊗ b1, a⊗ b2, . . .) ∈ Dom(⊕),

where

Dom(⊕) = {(Pl(V1 |U),Pl(V2 |U), . . .) :

V1, V2, . . . ∈ F are pairwise disjoint and U ∈ F ′},

and

Dom(⊗) = {(Pl(U1 |U2 ∩ U3),Pl(U2 |U3)) :

U2 ∩ U3 ∈ F ′, U1, U2, U3 ∈ F}.

(The reason that this property is required only for tuples in Dom(⊕)

and Dom(⊗) is discussed shortly.)

– if (a, c), (b, c) ∈ Dom(⊗), a⊗ c ≤ b⊗ c, and c 6= ⊥, then a ≤ b.

To understand the reason for the restriction to Dom(⊕) and Dom(⊗), consider

probability. In that case, D is [0, 1], and we take ⊕∞
i=1bi to be max(

∑∞
i=1 b1, 1). It

is not too hard to show that the distributive property does not hold in general if

∑∞
i=1 bi > 1 (consider, for example a = 1/2, b1 = b2 = 2/3, and bi = 0 for i ≥ 3);
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however, it does hold if
∑∞

i=1 bi ≤ 1, a property that is guaranteed to hold if there

exist sets V1, V2, . . . that are pairwise disjoint and a set U such that bi = µ(Vi |U)

for some probability measure µ.

It can be shown (see [34, 36]) that the constraints on cacps’s imply that ⊥ acts

as an identity element for ⊕ and that > acts as an identity element for ⊗, just

as 0 and 1 do for addition and multiplication, as long as we restrict to tuples in

Dom(⊕) and Dom(⊗), respectively, which is all we care about in our proofs. The

constraints also imply that Pl(U |U) = > for U ∈ F .

All the plausibility measures we considered earlier can be viewed as examples

of cacps’s. First, the trivial plausibility measure Pltriv is a cacps if we take ⊕ to

be max and ⊗ to be min. A conditional probability space (as just defined) is a

cacps simply by defining ⊕ as above, so that ⊕∞
i=1bi = max(

∑∞
i=1 bi, 1), and taking

⊗ to be multiplication. If we have a set M of probability measures on a space W ,

we can construct a conditional plausibility measure PlM in essentially the same

way that we constructed an unconditional plausibility measure from the set M,

so that PlM(V |U) is the function fV |U from measures in M to [0, 1] such that

fV |U(µ) = µ(V |U) if µ(U) 6= 0, and fV |U(µ) = ∗ (i.e., undefined) if µ(U) = 0. To

get a cacps, we simply define ⊕ and ⊗ pointwise (so that, for example, f ⊕ g is

that function such that (f ⊕g)(µ) = f(µ)⊕g(µ)). There are subtleties involved in

defining the set F ′ on which conditioning is defined—in particular, care is required

when dealing with sets U such that µ(U) > 0 for some, but not all, of the measures

in M. These issues do not affect the results of this paper because we assume that

the information sets on which we condition have positive probability, so we ignore

them here. See Halpern [36] for more details.

Define a run-based plausibility system to be a cacps (R,F ,F ′,Pl). Instead of
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requiring that µ(R(Ki(r,m))) > 0 as in the probabilistic case, we now require that

R(Ki(r,m)) ∈ F ′ for all agents i and points (r,m). This requirement guarantees

that conditioning on R(Ki(r,m)) is defined, but is easier to work with than the

requirement that µ(R(Ki(r,m))) > 0. We can now repeat the Halpern-Tuttle

construction to generate standard plausibilistic systems. With this construction,

we can explain how the results of Sections 3.2.1, 3.2.2, and 3.2.3 carry over to the

more general plausibilistic setting. As a rule of thumb, the results extend to the

plausibilistic setting by replacing + and × consistently in the proofs by ⊕ and ⊗,

but some care is required. We summarize the details here without stating them as

formal results; a technical discussion appears in the appendix.

• Proposition 8 generalizes to run-based plausibility systems.

• Theorems 3 and 4 carry over to the plausibilistic setting (with essentially

the same proofs) once we define a language for reasoning about plausibility

analogous to the language for reasoning about probability, with formulas of

the form Pli(φ) = α.

• Proposition 6 generalizes, given a common prior Plcp , provided that ⊗ is

commutative. Total secrecy requires that for all points (r,m),

Plcp(Ki(r,m) | PT (R)) 6= ⊥ and Plcp(Kj(r,m) | PT (R)) 6= ⊥;

similarly, synchronous secrecy requires that for all points,

Plcp(Ki(r,m) | PT (m)) 6= ⊥ and Plcp(Kj(r,m) | PT (m)) 6= ⊥.

• Proposition 7 generalizes provided that ⊗ is commutative and that for all

points (r,m) we have Pl(R(Ki(r,m)) |R) 6= ⊥ and Pl(R(Kj(r,m)) |R) 6= ⊥.
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• Theorem 5 can be extended using an appropriate definition of adversarial

plausibility systems.

These results demonstrate the essential unity of our definitions and theorems in

the probabilistic and nonprobabilistic cases, and suggest further generalizations.

In particular, it may be worthwhile to consider definitions of secrecy based on

representations of uncertainty that are more qualitative than probability is. Such

measures might be useful for mitigating the difficulties associated with quantifying

probability measures and deciding how nondeterministic choices are resolved.



Chapter 4

Defining Anonymity

4.1 Defining anonymity using knowledge

4.1.1 Revisiting secrecy

In Chapter 3, we looked at requirements of total secrecy in multiagent systems.

Total secrecy basically requires that in a system with “classified” and “unclassi-

fied” users, the unclassified users should never be able to infer the actions or the

local states of the unclassified users. For secrecy, the “what needs to be hidden”

component of the requirement is extremely restrictive: total secrecy requires that

absolutely everything that a classified user does must be hidden. The “how well

does it need to be hidden” component depends on the situation. Our definition of

secrecy says that for any nontrivial fact φ (that is, one that is not already valid)

that depends only the state of the classified or high-level agent, the formula ¬Kjφ

must be valid. Semantically, this means that whatever the high-level user does,

there exists some run where the low user’s view of the system is the same, but the

high-level user did something different. Our nonprobabilistic definitions are fairly

strong (simply because secrecy requires that so much be hidden). The probabilistic

definitions we gave require even more: not only can the agent not learn any new

classified fact, but he also cannot learn anything about the probability of any such

fact. (In other words, if an agent initially assigns a classified fact φ a probability

α of being true, he always assigns φ that probability.) It would be perfectly nat-

ural, and possibly quite interesting, to consider definitions of secrecy that do not

require so much to be hidden (e.g., by allowing some classified information to be

59
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declassified [95]), or to discuss definitions that do not require such strong secrecy

(e.g., by giving definitions that were stronger than the nonprobabilistic definitions

we gave, but not quite so strong as the probabilistic definitions).

4.1.2 Defining anonymity

The basic intuition behind anonymity is that actions should be divorced from

the agents who perform them, for some set of observers. Put another way, the

information that needs to be hidden is the identity of the agent (or set of agents)

who perform a particular action. Who the information needs to be hidden from,

that is, which observers, depends on the situation. The most interesting aspect of

the definitions of anonymity that we present here will often have to do with how

well an agent’s identity must be protected.

Throughout this chapter, and when we consider related definitions of anonymity

in the following chapter, we use the formula θ(i, a) to represent “agent i has per-

formed action a, or will perform a in the future.”1 For future reference, let δ(i, a)

represent “agent i has performed action a.” Note that θ(i, a) is a fact about the

run: if it is true at some point in a run, it is true at all points in a run (since

it is true even if i performs a at some point in the future). On the other hand,

δ(i, a) may be false at the start of a run, and then become true at the point where

i performs a.

It is not our goal in this dissertation to provide a “correct” definition of

anonymity. We also want to avoid giving an encyclopedia of definitions. Rather,

1If we want to consider systems that may crash we may want to consider θ′(i, a)
instead, where θ′(i, a) represents “agent i has performed action a, or will perform a
in the future if the system does not crash.” Since issues of failure are orthogonal to
the anonymity issues that we focus on here, we consider only the simpler definition.
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we give some basic definitions of anonymity to show how our framework can be

used. We base our choice of definitions in part on definitions presented in ear-

lier papers, to make clear how our work relates to previous work, and in part on

which definitions of anonymity we expect to be useful in practice. We first give an

extremely weak definition, but one that nonetheless illustrates the basic intuition

behind any definition of anonymity.

Definition 14 Action a, performed by agent i, is minimally anonymous with re-

spect to agent j in the interpreted system I, if I |= ¬Kj[θ(i, a)].

This definition makes it clear what is being hidden (θ(i, a)—the fact that i

performs a) and from whom (j). It also describes how well the information is

hidden: it requires that j not be sure that i actually performed, or will perform,

the action. Note that this is a weak requirement. It might be the case, for example,

that agent j is certain that the action was performed either by i, or by at most

one or two other agents, thereby making i a “prime suspect.” It might also be the

case that j is able to place a very high probability on i performing the action, even

though he isn’t absolutely certain of it. (Agent j might know that there is some

slight probability that some other agent i′ performed the action, for example.)

Nonetheless, it should be the case that for any other definition of anonymity we

give, if we want to ensure that i’s performing action a is to be kept anonymous

as far as observer j is concerned, then i’s action should be at least minimally

anonymous with respect to j.

Our definition of a being minimally anonymous with respect to j is equivalent

to the apparently weaker requirement I |= θ(i, a) ⇒ ¬Kj[θ(i, a)], which says that

if action a is performed by i, then j does not not know it. Clearly if j never knows

that a is performed by i, then j will never know that a is performed by i if i
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actually does perform a. To see that the converse holds, it suffices to note that

if i does not perform a, then surely ¬Kj[θ(i, a)] holds. Thus, this definition, like

several that will follow, can be viewed as having the form “if i performed a, then

j does not know some appropriate fact.”

The definition of minimal anonymity also makes it clear how anonymity relates

to secrecy, as defined in our earlier work [39]. To explain how, we first need to

describe how we defined secrecy in terms of knowledge. Given a system I, say

that φ is nontrivial in I if I 6|= φ, and that φ depends only on the local state of

agent i in I if I |= φ ⇒ Kiφ. Intuitively, φ is nontrivial in I if φ could be false

in I, and φ depends only on i’s local state if i always knows whether or not φ is

true. (It is easy to see that φ depends only on the local state of i if (I, r,m) |= φ

and ri(m) = r′i(m
′) implies that (I, r′,m′) |= φ.) According to the definition in

[39], agent i maintains total secrecy with respect to another agent j in system I if

for every nontrivial fact φ that depends only on the local state of i, the formula

¬Kjφ is valid for the system. That is, i maintains total secrecy with respect to

j if j does not learn anything new about agent i’s state. In general, θ(i, a) does

not depend only on i’s local state, because whether i performs a may depend on

whether or not i gets a certain message from some other agent i′. On the other

hand, if whether or not i performs a depends only on i’s protocol, and the protocol

is encoded in i’s local state, then θ(i, a) depends only on i’s local state. If θ(i, a)

does depend only on i’s local state and j did not know all along that i was going

to perform action a (i.e., if we assume that θ(i, a) is nontrivial), then Definition 14

is clearly a special case of the definition of secrecy. In any case, it is in much the

same spirit as the definition of secrecy. Essentially, anonymity says that the fact

that agent i has or will perform action a must be hidden from j, while total secrecy
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says that all facts that depend on agent i must be hidden from j.

Note that this definition of minimal anonymity is different from the one given

in an earlier presentation of this work [40]. There, the definition given used δ(i, a)

rather than θ(i, a). We say that a performed by agent i is minimally δ-anonymous

if Definition 14 holds, with θ(i, a) replaced by δ(i, a). It is easy to see that minimal

anonymity implies minimal δ-anonymity (since δ(i, a) implies θ(i, a)), but the con-

verse is not true in general. For example, suppose that j gets a signal if i is going

to perform action a (before i actually performs the action), but then never finds

out exactly when i performs a. Then minimal anonymity does not hold. In runs

where i performs a, agent j knows that i will perform a when he gets the signal.

On the other hand, minimal δ-anonymity does hold, because j never knows when

i performs a. In this situation, minimal anonymity seems to capture our intuitions

of what anonymity should mean better than minimal δ-anonymity does.

The next definition of anonymity we give is much stronger. It requires that

if some agent i performs an action anonymously with respect to another agent j,

then j must think it possible that the action could have been performed by any of

the agents (except for j). Let Pjφ be an abbreviation for ¬Kj¬φ. The operator

Pj is the dual of Kj; intuitively, Pjφ means “agent j thinks that φ is possible.”

Definition 15 Action a, performed by agent i, is totally anonymous with respect

to j in the interpreted system I if

I |= θ(i, a) ⇒
∧

i′ 6=j

Pj[θ(i
′, a)].

Definition 15 captures the notion that an action is anonymous if, as far as the

observer in question is concerned, it could have been performed by anybody in the

system.
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Again, in the conference version of the paper, we defined total anonymity using

δ(i, a) rather than θ(i, a). (The same remark holds for all the other definitions of

anonymity that we give, although we do not always say so explicitly.) Let total

δ-anonymity be the anonymity requirement obtained when θ(i, a) is replaced by

δ(i, a). It is not hard to show that if agents have perfect recall (which intuitively

means that their local state keeps track of all the actions they have performed—

see [20] for the formal definition), then total δ-anonymity implies total anonymity.

This is not true, in general, without perfect recall, because it might be possible for

some agent to know that i will perform action a—and therefore that no other agent

will—but forget this fact by the time that i actually performs a. Similarly, total

anonymity does not imply total δ-anonymity. To see why, suppose that the agents

are numbered 1, . . . , n, and that an outside observer knows that if j performs action

a, then j will perform it at time j. Then total anonymity may hold even though

total δ-anonymity does not. For example, at time 3, although the observer may

consider it possible that agent 4 will perform the action (at time 4), he cannot

consider it possible that 4 has already performed the action, as required by total

δ-anonymity.

Chaum [5] showed that total anonymity could be obtained using DC-nets. Re-

call that in a DC-net, a group of n users use Chaum’s dining cryptographer’s

protocol (described in the same paper) to achieve anonymous communication. If

we model a DC-net as an interpreted multiagent system I whose agents consist

exclusively of agents participating in a single DC-net, then if an agent i sends

a message using the DC-net protocol, that action is totally anonymous. (Chaum

proves this, under the assumption that any message could be generated by any user

in the system.) Note that in the dining cryptographer’s example, total anonymity
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and δ-total anonymity agree, because who paid is decided before the protocol

starts.

It is easy to show that if an action is totally anonymous, then it must be

minimally anonymous as well, as long as two simple requirements are satisfied.

First, there must be at least 3 agents in the system. (A college student with only

one roommate can’t anonymously leave out her dirty dishes, but a student with

at least two roommates might be able to.) Second, it must be the case that a

can be performed only once in a given run of the system. Otherwise, it might

be possible for j to think that any agent i′ 6= i could have performed a, but for

j to know that agent i did, indeed, perform a. For example, consider a system

with three agents besides j. Agent j might know that all three of the other agents

performed action a. In that case, in particular, j knows that i performed a, so

action a performed by i is not minimally anonymous with respect to j, but is totally

anonymous. We expect that this assumption will typically be met in practice. It

is certainly consistent with examples of anonymity given in the literature. (See,

for example, [5, 79]). In any case, if it is not met, it is possible to tag occurrences

of an action (so that we can talk about the kth time a is performed). Thus, we

can talk about the ith occurrence of an action being anonymous. Because the ith

occurrence of an action can only happen once in any given run, our requirement is

satisfied.

Proposition 9 Suppose that there are at least three agents in the interpreted sys-

tem I and that

I |=
∧

i6=j

¬[θ(i, a) ∧ θ(j, a)].

If action a, performed by agent i, is totally anonymous with respect to j, then it is

minimally anonymous as well.
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Proof: Suppose that action a is totally anonymous. Because there are three agents

in the system, there is some agent i′ other than i and j, and by total anonymity,

I |= θ(i, a) ⇒ Pj[θ(i
′, a)]. If (I, r,m) |= ¬θ(i, a), clearly (I, r,m) |= ¬Kj[θ(i, a)].

Otherwise, (I, r,m) |= Pj[θ(i
′, a)] by total anonymity. Thus, there exists a point

(r′,m′) such that r′j(m
′) = rj(m) and (I, r′,m′) |= θ(i′, a). By our assumption,

(I, r′,m′) |= ¬θ(i, a), because i 6= i′. Therefore, (I, r,m) |= ¬Kj[θ(i, a)]. It follows

that a is minimally anonymous with respect to j. ut

Definitions 14 and 15 are conceptually similar, even though the latter definition

is much stronger. Once again, there is a set of formulas that an observer is not

allowed to know. With the earlier definition, there is only one formula in this set:

θ(i, a). As long as j doesn’t know that i performed action a, this requirement

is satisfied. With total anonymity, there are more formulas that j is not allowed

to know: they take the form ¬θ(i′, a). Before, we could guarantee only that j

did not know that i did the action; here, for many agents i′, we guarantee that j

does not know that i′ did not do the action. The definition is made slightly more

complicated by the implication, which restricts the conditions under which j is not

allowed to know ¬θ(i′, a). (If i didn’t actually perform the action, we don’t care

what j thinks, since we are concerned only with anonymity with respect to i.) But

the basic idea is the same.

Note that total anonymity does not necessarily follow from total secrecy, be-

cause the formula ¬θ(i′, a), for i′ 6= i, does not, in general, depend only on the local

state of i. It is therefore perfectly consistent with the definition of total secrecy for

j to learn this fact, in violation of total anonymity. (Secrecy, of course, does not

follow from anonymity, because secrecy requires that many more facts be hidden

than simply whether i performed a given action.)
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Total anonymity is a very strong requirement. Often, an action will not be

totally anonymous, but only anonymous up to some set of agents who could have

performed the action. This situation merits a weaker definition of anonymity. To

be more precise, let I be the set of all agents of the system and suppose that we

have some set IA ⊆ I—an “anonymity set,” using the terminology of Chaum [5]

and Pfitzmann and Köhntopp [68]—of agents who can perform some action. We

can define anonymity in terms of this set.

Definition 16 Action a, performed by agent i, is anonymous up to IA ⊆ I with

respect to j if

I |= θ(i, a) ⇒
∧

i′∈IA

Pj[θ(i
′, a)].

In the anonymous message-passing system Herbivore [30], users are organized

into cliques C1, . . . , Cn, each of which uses the dining cryptographers protocol [5] for

anonymous message-transmission. If a user wants to send an anonymous message,

she can do so through her clique. Herbivore claims that any user i is able to send a

message anonymously up to Cj, where i ∈ Cj. As the size of a user’s clique varies,

so does the strength of the anonymity guarantees provided by the system.

In some situations, it is not necessary that there be a fixed anonymity set, as

in Definition 16. It suffices that, at all times, there exists some anonymity set with

at least, say, k agents. This leads to a definition of k-anonymity.

Definition 17 Action a, performed by agent i, is k-anonymous with respect to j

if

I |= θ(i, a) ⇒
∨

{IA:|IA|=k}

∧

i′∈IA

Pj[θ(i
′, a)].

This definition says that at any point j must think it possible that any of at

least k agents might perform, or have performed, the action. Note that the set of
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k agents might be different in different runs, making this condition strictly weaker

than anonymity up to a particular set of size k.

A number of systems have been proposed that provide k-anonymity for some k.

In the anonymous communications network protocol recently proposed by von Ahn,

Bortz, and Hopper [1], users can send messages with guarantees of k-anonymity. In

the system P 5 (for “Peer-to-Peer Personal Privacy Protocol”) [82], users join a log-

ical broadcast tree that provides anonymous communication, and users can choose

what level of k-anonymity they want, given that k-anonymity for a higher value of

k makes communication more inefficient. Herbivore [30] provides anonymity using

cliques of DC-nets. If the system guarantees that the cliques all have a size of at

least k, so that regardless of clique composition, there are at least k users capable

of sending any anonymous message, then Herbivore guarantees k-anonymity.

4.1.3 A more detailed example: dining cryptographers

A well-known example of anonymity in the computer security literature is Chaum’s

“dining cryptographers problem” [5]. In the original description of this problem,

three cryptographers sit down to dinner and are informed by the host that someone

has already paid the bill anonymously. The cryptographers decide that the bill

was paid either by one of the three people in their group, or by an outside agency

such as the NSA. They want to find out which of these two situations is the

actual one while preserving the anonymity of the cryptographer who (might have)

paid. Chaum provides a protocol that the cryptographers can use to solve this

problem. To guarantee that it works, however, it would be nice to check that

anonymity conditions hold. Assuming we have a system that includes a set of

three cryptographer agents C = {0, 1, 2}, as well as an outside observer agent o,
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the protocol should guarantee that for each agent i ∈ C, and each agent j ∈ C−{i},

the act of paying is anonymous up to C − {j} with respect to j. For an outside

observer o, i.e., an agent other than one of three cryptographers, the protocol

should guarantee that for each agent i ∈ C, the protocol is anonymous up to C

with respect to o. This can be made precise using our definition of anonymity up

to a set.

Because the requirements are symmetric for each of the three cryptographers,

we can describe the anonymity specification compactly by naming the agents us-

ing modular arithmetic. We use ⊕ to denote addition mod 3. Let the interpreted

system (I = (R, π) represent the possible runs of one instance of the dining cryp-

tographers protocol, where the interpretation π interprets formulas of the form

θ(i, “paid”) in the obvious way. The following knowledge-based requirements com-

prise the anonymity portion of the protocol’s specification, for each agent i ∈ C:

I |= θ(i, “paid”) ⇒ Pi⊕1θ(i⊕ 2, “paid”) ∧ Pi⊕2θ(i⊕ 1, “paid”)

∧ Poθ(i⊕ 1, “paid”) ∧ Poθ(i⊕ 2, “paid”).

In other words, if cryptographer i paid, then both of the other cryptographers

must think it possible that the third cryptographer could have paid. In addition,

an outside observer must think it possible that any of the three cryptographers

could have paid.

4.2 Probabilistic variants of anonymity

4.2.1 Probabilistic anonymity

All of the definitions presented in Section 4.1 were nonprobabilistic. As with se-

crecy, nonprobabilistic definitions of anonymity are, in some ways, quite weak. For



70

all the definitions we gave, it was necessary only that observers think it possible

that multiple agents could have performed the anonymous action. However, an

event that is possible may nonetheless be extremely unlikely. Consider our defi-

nition of total anonymity (Definition 15). It states that an action performed by

i is totally anonymous if the observer j thinks it could have been performed by

any agent other than j. This may seem like a strong requirement, but it can look

quite weak when probabilities are involved. Suppose, for example that we have 102

agents, that j can determine that i performed action a with probability 0.99, and

that j believes that each of the other agents performed action a with probability

0.0001. In this case, agent i might not be very happy with the guarantees provided

by total anonymity. Of course, the appropriate notion of anonymity will depend

on the application: i might be content to know that no agent can prove that she

performed the anonymous action. In that case, it might suffice for the action to be

only minimally anonymous. However, in many other cases, an agent might want

a more quantitative, probabilistic guarantee that it will be considered reasonably

likely that other agents could have performed the action.

We focus here on definitions of anonymity given with respect to interpreted

standard probability systems, as defined in Section 2.2. We write I = (R, µ, π)

to denote an interpreted probability system. (The probability assignment PR is

determined by µ according to the Halpern-Tuttle construction.)

It is straightforward to define probabilistic notions of anonymity in probabilistic

systems. We can think of Definition 14, for example, as saying that j’s probability

that i performs the anonymous action a must be less than 1 (assuming that every

nonempty set has positive probability). This can be generalized by specifying some

α ≤ 1 and requiring that the probability of θ(i, a) be less than α.
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Definition 18 Action a, performed by agent i, is α-anonymous with respect to

agent j if I |= θ(i, a) ⇒ Prj[θ(i, a)] < α.

Note that if we replace θ(i, a) by δ(i, a) in Definition 18, the resulting notion

might not be well defined. The problem is that the set

{(r′,m′) ∈ Ki(r,m) : (I, r′,m′) |= δ(i, a)}

may not be measurable; it may not have the form Ki(r,m)(S) for some S ⊆ R.

The problem does not arise if I is a synchronous system (in which case i knows

that time, and all the points in Ki(r,m) are of the form (r′,m)), but it does arise if

I is asynchronous. We avoid this technical problem by working with θ(i, a) rather

than δ(i, a).

Definition 18, unlike Definition 14, includes an implication involving θ(i, a). It

is easy to check that Definition 14 does not change when such an implication is

added; intuitively, if θ(i, a) is false then ¬Kj[θ(i, a)] is trivially true. Definition 18,

however, would change if we removed the implication, because it might be possible

for j to have a high probability of θ(i, a) even though it isn’t true. We include the

implication because without it, we place constraints on what j thinks about θ(i, a)

even if i has not performed the action a and will not perform it in the future. Such

a requirement, while interesting, seems more akin to “unsuspectibility” than to

anonymity.

Two of the notions of probabilistic anonymity considered by Reiter and Ru-

bin [71] in the context of their Crowds system can be understood in terms of

α-anonymity. Reiter and Rubin say that a sender has probable innocence if, from

an observer’s point of view, the sender “appears no more likely to be the orig-

inator than to not be the originator.” This is simply 0.5-anonymity. (Under
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reasonable assumptions, Crowds provides 0.5-anonymity for Web requests.) Sim-

ilarly, a sender has possible innocence if, from an observer’s point of view, “there

is a nontrivial probability that the real sender is someone else.” This corresponds

to minimal anonymity (as defined in Section 4.1.2), or to ε-anonymity for some

nontrivial value of ε.

It might seem at first that Definition 18 should be the only definition of

anonymity we need: as long as j’s probability of i performing the action is low

enough, i should have nothing to worry about. However, with further thought, it

is not hard to see that this is not the case.

Consider a scenario where there are 1002 agents, and where α = 0.11. Suppose

that the probability, according to Alice, that Bob performs the action is .1, but

that her probability that any of the other 1000 agents performs the action is 0.0009

(for each agent). Alice’s probability that Bob performs the action is small, but her

probability that anyone else performs it is more than three orders of magnitude

smaller. Bob is obviously the prime suspect.

This concern was addressed by Serjantov and Danezis [80] in their paper on

information-theoretic definitions of anonymity. They consider the probability that

each agent in an anonymity set is the sender of some anonymous message, and

use entropy to quantify the amount of information that the system is leaking;

Diaz et al. [15] and Danezis [11] use similar techniques. In this dissertation we

do not consider quantitative measurements of anonymity, but we do agree that it

is worthwhile to consider stronger notions of anonymity than the nonprobabilistic

definitions, or even α-anonymity, can provide. We hope to examine quantitative

definitions in future work.

The next definition strengthens Definition 18 in the way that Definition 15
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strengthens Definition 14. It requires that no agent in the anonymity set be a

more likely suspect than any other.

Definition 19 Action a, performed by agent i, is strongly probabilistically anony-

mous up to IA with respect to agent j if for each i′ ∈ IA,

I |= θ(i, a) ⇒ Prj[θ(i, a)] = Prj[θ(i
′, a)].

Depending on the size of IA, this definition can be extremely strong. It does not

state simply that for all agents in IA, the observer must think it is reasonably likely

that the agent could have performed the action; it also says that the observer’s

probabilities must be the same for each such agent. Of course, we could weaken

the definition somewhat by not requiring that all the probabilities be equal, but

by instead requiring that they be approximately equal (i.e., that their difference

be small or that their ratio be close to 1). Reiter and Rubin [71], for example, say

that the sender of a message is beyond suspicion if she “appears no more likely to

be the originator of that message than any other potential sender in the system.”

In our terminology, i is beyond suspicion with respect to j if for each i′ ∈ IA,

I |= θ(i, a) ⇒ Prj[θ(i, a)] ≤ Prj[θ(i
′, a)].

This is clearly weaker than strong probabilistic anonymity, but still a very strong

requirement, and perhaps more reasonable, too. Our main point is that a wide

variety of properties can be expressed clearly and succinctly in our framework.

4.2.2 Conditional anonymity

While we have shown that many useful notions of anonymity—including many

definitions that have already been proposed—can be expressed in our framework,
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we claim that there are some important intuitions that have not yet been captured.

Suppose, for example, that someone makes a $5,000,000 donation to Cornell Uni-

versity. It is clearly not the case that everyone is equally likely, or even almost

equally likely, to have made the donation. Of course, we could take the anonymity

set IA to consist of those people who might be in a position to make such a large

donation, and insist that they all be considered equally likely. Unfortunately, even

that is unreasonable: a priori, some of them may already have known connections

to Cornell, and thus be considered far more likely to have made the donation.

All that an anonymous donor can reasonably expect is that nothing an observer

learns from his interactions with the environment (e.g., reading the newspapers,

noting when the donation was made, etc.) will give him more information about

the identity of the donor than he already had.

For another example, consider a conference or research journal that provides

anonymous reviews to researchers who submit their papers for publication. It is

unlikely that the review process provides anything like α-anonymity for a small α,

or strongly probabilistic anonymity up to some reasonable set. When a prelim-

inary version of this work, for example, was accepted by the Computer Security

Foundations Workshop, the acceptance notice included three reviews that were, in

our terminology, anonymous up to the program committee. That is, any one of the

reviews we received could have been written by any of the members of the program

committee. However, by reading some of the reviews, we were able to make fairly

good guesses as to which committee members had provided which reviews, based

on our knowledge of the specializations of the various members, and based on the

content of the reviews themselves. Moreover, we had a fairly good idea of which

committee members would provide reviews of the paper even before we received
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the reviews. Thus, it seems unreasonable to hope that the review process would

provide strong probabilistic anonymity (up to the program committee), or even

some weaker variant of probabilistic anonymity. Probabilistic anonymity would

require the reviews to convert our prior beliefs, according to which some program

committee members were more likely than others to be reviewers of the paper, to

posterior beliefs according to which all program committee members were equally

likely. This does not seem at all reasonable. However, the reviewers might hope

that that the process did not give us any more information than we already had.

In the definitions of secrecy given in the previous chapter, we tried to capture

the intuition that, when an unclassified user interacts with a secure system, she

does not learn anything about any classified user that she didn’t already know.

We did this formally by requiring that, for any three points (r,m), (r′,m′), and

(r′′,m′′),

µ(r,m,j)(Ki(r
′′,m′′)) = µ(r′,m′,j)(Ki(r

′′,m′′)). (4.1)

That is, whatever the unclassified user j sees, her probability of any particular

classified state will remain unchanged.

When defining anonymity, we are not concerned with protecting all information

about some agent i, but rather the fact that i performs some particular action a.

Given an interpreted system I = (R, π, µ) and a formula φ, let er(φ) consist of

the set of runs r such that φ is true at some point in r, and let ep(φ) be the set of

points where φ is true. That is

er(φ) , {r : ∃m((I, r,m) |= φ)},

ep(φ) , {(r,m) : (I, r,m) |= φ}.

The most obvious analogue to (4.1) is the requirement that, for all points (r,m)
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and (r′,m′),

µ(r,m,j)(ep(θ(i, a))) = µ(r′,m′,j)(ep(θ(i, a))).

This definition says that j never learns anything about the probability that i

performs performs a: she always ascribes the same probability to this event. In the

context of our anonymous donation example, this would say that the probability

(according to j) of i donating $5,000,000 to Cornell is the same at all times.

The problem with this definition is that it does not allow j to learn that someone

donated $5,000,000 to Cornell. That is, before j learned that someone donated

$5,000,000 to Cornell, j may have thought it was unlikely that anyone would donate

that much money to Cornell. We cannot expect that j’s probability of i donating

$5,000,000 would be the same both before and after learning that someone made

a donation. We want to give a definition of conditional anonymity that allows

observers to learn that an action has been performed, but that protects—as much

as possible, given the system—the fact that some particular agent performs the

action. If, on the other hand, the anonymous action has not been performed, then

the observer’s probabilities do not matter.

Suppose that i wants to perform action a, and wants conditional anonymity

with respect to j. Let θ(, a) represent the fact that a has been performed by some

agent other than j, that is, θ(, a) , ∨i′ 6=jθ(i
′, a). The definition of conditional

anonymity says that j’s prior probability of θ(i, a) given θ(, a) must be the same

as his posterior probability of θ(i, a) at points where j knows θ(, a), i.e., at points

where j knows that someone other than j has performed (or will perform) a. Let

α = µ(er(θ(i, a)) | er(θ(, a))). This is the prior probability that i has performed

a, given that somebody other than j has. Conditional anonymity says that at

any point where j knows that someone other than j performs a, j’s probability
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of θ(i, a) must be α. In other words, j shouldn’t be able to learn anything more

about who performs a (except that somebody does) than he know before he began

interacting with the system in the first place.

Definition 20 Action a, performed by agent i, is conditionally anonymous with

respect to j in the interpreted probability system I if

I |= Kjθ(, a) ⇒ Prj(θ(i, a)) = µ(er(θ(i, a)) | er(θ(, a))).

Note that if only one agent ever performs a, then a is trivially conditionally anony-

mous with respect to j, but may not be minimally anonymous with respect to j.

Thus, conditional anonymity does not necessarily imply minimal anonymity.

In Definition 20, we implicitly assumed that agent j was allowed to learn that

someone other than j performed action a; anonymity is intended to hide which

agent performed a, given that somebody did. More generally, we believe that we

need to consider anonymity with respect to what an observer is allowed to learn.

We might want to specify, for example, that an observer is allowed to know that

a donation was made, and for how much, or to learn the contents of a conference

paper review. The following definition lets us do this formally.

Definition 21 Action a, performed by agent i, is conditionally anonymous with

respect to j and φ in the interpreted probability system I if

I |= Kjφ⇒ Prj(θ(i, a)) = µ(er(θ(i, a)) | er(φ)).

Definition 20 is clearly the special case of Definition 21 where φ = θ(, a). In-

tuitively, both of these definitions say that once an observer learns some fact φ

connected to the fact θ(i, a), we require that she doesn’t learn anything else that

might change her probabilities of θ(i, a).



78

4.2.3 Example: probabilistic dining cryptographers

Returning the dining cryptographers problem, suppose that it is well-known that

one of the three cryptographers at the table is much more generous than the other

two, and therefore more likely to pay for dinner. Suppose, for example, that the

probability measure on the set of runs where the generous cryptographer has paid

is 0.8, given that one of the cryptographers paid for dinner, and that it is 0.1

for each of the other two cryptographers. Conditional anonymity for each of the

three cryptographers with respect to an outside observer means that when such

observer learns that one of the cryptographers has paid for dinner, his probability

that any of the three cryptographers paid should remain 0.8, 0.1, and 0.1. If the

one of the thrifty cryptographers paid, the generous cryptographer should think

that there is a probability of 0.5 = 0.1/(0.1 + 0.1) that either of the others paid.

Likewise, if the generous cryptographer paid, each of the others should think that

there is a probability of 0.8/(0.8 + 0.1) that the generous cryptographer paid and

a probability of 0.1/(0.8 + 0.1) that the other thrifty cryptographer paid. We can

similarly calculate all the other relevant probabilities.

More generally, suppose that (R, µ, π) is an interpreted probabilistic system

representing instances of the dining cryptographers protocol, where the interpre-

tation π once again interprets formulas of the form θ(i, “paid”) and θ(, “paid”)

in the obvious way, and where the formula γ is true if one of the cryptographers

paid. (That is, γ is equivalent to
∨
i∈{0,1,2} θ(i, “paid”).) For any cryptographer

i ∈ {0, 1, 2}, let α(i) be the prior probability that i paid, given that somebody else

did. That is, let

α(i) , µ(er(θ(i, “paid”)) | er(γ)).

In the more concrete example given above, if 0 is the generous cryptographer, we
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would have α(0) = 0.8 and α(1) = α(2) = 0.1.

For the purposes of conditional probability with respect to an agent j, we are

interested in the probability that some agent i paid, given that somebody other

than j paid. Formally, for i 6= j, let

α(i, j) , µ(er(θ(i, “paid”)) | er(θ(, “paid”))).

If an observer o is not one of the three cryptographers, than o didn’t pay, and

we have α(i, o) = α(i). Otherwise, if i, j ∈ {0, 1, 2}, we can use conditioning to

compute α(i, j):

α(i, j) =
α(i)

α(j ⊕ 1) + α(j ⊕ 2)
.

(Once again, we make our definitions and requirements more compact by using

modular arithmetic, where ⊕ denotes addition mod 3.)

The following formula captures the requirement of conditional anonymity in

the dining cryptographer’s protocol, for each cryptographer i, with respect to the

other cryptographers and any outside observers.

I |=
[
Ki⊕1θ(i⊕ 1, “paid”) ⇒ Pri⊕1(θ(i, “paid”)) = α(i, i⊕ 1)

]
∧

[
Ki⊕2θ(i⊕ 2, “paid”) ⇒ Pri⊕2(θ(i, “paid”)) = α(i, i⊕ 2)

]
∧

[Koθ(o, “paid”) ⇒ Pro(θ(i, “paid”)) = α(i, o)] .

Chaum’s original proof that the dining cryptographers protocol provides ano-

nymity actually proves conditional anonymity in this general setting. Note that if

the probability that one of the cryptographers will pay is 1, that cryptographer will

have conditional anonymity even though he doesn’t even have minimal anonymity.
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4.2.4 Other uses for probability

In the previous two subsections, we have emphasized how probability can be used to

obtain definitions of anonymity stronger than those presented in Section 4.1. How-

ever, probabilistic systems can also be used to define interesting ways of weakening

those definitions. Real-world anonymity systems do not offer absolute guarantees

of anonymity such as those those specified by our definitions. Rather, they guar-

antee that a user’s anonymity will be protected with high probability. In a given

run, a user’s anonymity might be protected or corrupted. If the probability of the

event that a user’s anonymity is corrupted is very small, i.e., the set of runs where

her anonymity is not protected is assigned a very small probability by the measure

µ, this might be enough of a guarantee for the user to interact with the system.

Recall that we said that i maintains total anonymity with respect to j if the

fact φ = θ(i, a) ⇒
∧
i′ 6=j Pj[θ(i

′, a)] is true at every point in the system. Total

anonymity is compromised in a run r if at some point (r,m), ¬φ holds. Therefore,

the set of runs where total anonymity is compromised is simply er(¬φ), using the

notation of the previous section. If µ(er(¬φ)) is very small, then i maintains total

anonymity with very high probability. This analysis can obviously be extended to

all the other definitions of anonymity given in previous sections.

Bounds such as these are useful for analyzing real-world systems. The Crowds

system [71], for example, uses randomization when routing communication traffic,

so that anonymity is protected with high probability. The probabilistic guarantees

provided by Crowds were analyzed formally by Shmatikov [83], using a probabilistic

model checker, and he demonstrates how the anonymity guarantees provided by

the Crowds system change as more users (who may be either honest or corrupt)

are added to the system. Shmatikov uses a temporal probabilistic logic to express
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probabilistic anonymity properties, so these properties can be expressed in our

system framework. (It is straightforward to give semantics to temporal operators

in systems; see [20].) In any case, Shmatikov’s analysis of a real-world anonymity

system is a useful example of how the formal methods that we advocate can be

used to specify and verify properties of real-world systems.



Chapter 5

Related Definitions of Secrecy and

Anonymity

5.1 Related definitions of secrecy

We are certainly not the first to discuss formal definitions of secrecy: many defi-

nitions have been proposed over the last two decades. One reason for this is that

researchers have sought an “ideal” definition of security that has a variety of use-

ful properties (such as verifiability and composability). While we certainly agree

that verifiability and composability are important properties, we believe that the

intuition behind secrecy should be isolated from stronger properties that happen

to imply secrecy—especially when we have to worry about subtle issues such as

probability and nondeterminism.

In this section we consider how our definitions relate to other information-flow

conditions. We show in particular how they can capture work that has been done in

the synchronous setting, the asynchronous setting, and the probabilistic setting.

Because there are literally dozens of papers that have, in one way or another,

defined notions of secrecy or confidentiality, this section is in no way meant to be

comprehensive or representative. Rather, we have chosen examples that inspired

our definitions, or examples for which our definitions give some insight. In light of

our earlier comments, we also focus on definitions that have tried to capture the

essence of secrecy rather than notions that have been more concerned with issues

like composability and verification.

One important strand of literature to which we do not compare our work di-

82
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rectly here is the work on defining information flow and noninterference using

process algebras related to CCS and CSP [21, 22, 73, 74]. Although we believe

that the intuitions behind many of these definitions are closely related to our no-

tions of secrecy, a careful discussion of this issue would take us too far afield. In

future work we hope to consider the issue in detail, by describing how processes

can be translated to the runs-and-systems framework in a way that captures their

semantics and then showing how some of the process-algebraic definitions can be

recast as examples of secrecy. In Section 5.2.2 we give one instance of such a trans-

lation: we show how definitions of anonymity given using CSP by Schneider and

Sidiropoulos [79] can be captured in the runs-and-systems framework.

5.1.1 Secrecy in trace systems

Many papers in computer security define information-flow conditions such as se-

crecy and noninterference using trace-based models. Traces are usually defined as

sequences of input and output events, where each event is associated with some

agent (either as an input that she provides or an output that she sees). However,

there have been some subtle differences among the trace-based models. In some

cases, infinite traces are used; in others, the traces are finite. Similarly, some

models assume that the underlying systems are synchronous while others do not.

Although asynchronous system models have been more common, we first consider

synchronous trace-based systems.

Both McLean [58] and Wittbold and Johnson [93] present their definitions

of security in the context of synchronous input/output traces. These traces are

essentially restricted versions of runs. Here we consider a slightly simplified version

of McLean’s framework and describe two well-known noninterference properties
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within the framework.

Let In(H) be a set of possible high input values, let In(L) be a set of possible

low input values, let Out(H) be a set of possible high output values, and Out(L)

be a set of possible low output values. (We assume that these sets are pairwise

disjoint and finite.) Write Ev(L) = In(L) ∪ Out(L), Ev(H) = In(H) ∪ Out(H),

and Ev = Ev(L) ∪ Ev(H).

A tuple γ = 〈li, hi, lo, ho〉 (with li ∈ In(L), hi ∈ In(H), lo ∈ Out(L), and

ho ∈ Out(H)) represents a snapshot of a system at a given point in time; it

describes the input provided to the system by a low agent L and a high agent H,

and the output sent by the system to L andH. A synchronous trace t = 〈γ1, γ2, . . .〉

is an infinite sequence of such tuples. It represents an infinite execution sequence

of the entire system by describing the input/output behavior of the system at any

given point in time. (The traces are said to be synchronous because the input

and output values are specified for each agent at each time step, and both agents

can infer the time simply by looking at the number of system outputs they have

seen.) A synchronous trace system is a set Σ of synchronous traces, representing

the possible execution sequences of the system.

In a synchronous trace system, the local state of an agent can be defined using

a restriction function on traces. Given a set E ⊆ Ev, t � E gives us the trace t

with all elements not in E removed. For example, if

t = 〈〈l
(1)
i , h

(1)
i , l(1)o , h(1)

o 〉, 〈l
(2)
i , h

(2)
i , l(2)o , h(2)

o 〉, . . .〉,

then

t�Ev(L) = 〈〈l
(1)
i , l(1)o 〉, 〈l

(2)
i , l(2)o 〉, . . .〉.

Similarly, t �Ev(H) contains only high events, and t � In(H) contains only high

input events. For brevity we write t � L and t � H as shorthand for t � Ev(L)
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and t �Ev(H), respectively. Given a restriction set E, we denote the restriction

function (·�E) as �E (as a notational convenience).

Given a trace t = 〈γ1, γ2, . . .〉, the length-k prefix of t is tk = 〈γ1, γ2, . . . , γk〉,

that is, the finite sequence containing the first k state tuples of the trace t. Trace

restriction applies to trace prefixes in the obvious way.

It is easy to see that synchronous trace systems can be viewed as systems in

the multiagent systems framework. Given a trace t, we can define the run rt such

that rt(m) = (tm � L, tm �H). (For simplicity, we have omitted the environment

state from the global state in this construction, since it plays no role.) Given a

synchronous trace system Σ, let R(Σ) = {rt : t ∈ Σ}. It is easy to check that

R(Σ) is synchronous, and that both agents L and H have perfect recall.

McLean defines a number of notions of secrecy in his framework. We consider

two of the best known here: separability [58] and generalized noninterference [56].

Separability, as its name suggests, ensures secrecy between the low and high agents,

whereas generalized noninterference ensures that the low agent is unable to know

anything about high input behavior.

Definition 22 A synchronous trace system Σ satisfies separability if, for every

pair of traces t, t′ ∈ Σ, there exists a trace t′′ ∈ Σ such that t′′ � L = t � L and

t′′ �H = t′ �H.

Definition 23 A synchronous trace system Σ satisfies generalized noninterference

if, for every pair of traces t, t′ ∈ Σ, there exists a trace t′′ ∈ Σ such that t′′ �L = t�L

and t′′ �In(H) = t′ �In(H).

These definitions are both special cases of nondeducibility, as discussed in Sec-

tion 3.1.1: take the set of worlds W to be Σ, the information function g to be �L,
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and the information function h to be �H (for separability) and �In(H)
(for general-

ized noninterference). (It is not difficult to see that if the information functions g

and h are limited to trace restriction functions, then nondeducibility is essentially

equivalent in expressive power to selective interleaving functions, the mechanism

for defining security properties introduced by McLean [58].) In our framework,

separability essentially corresponds to synchronous secrecy, whereas generalized

noninterference corresponds to synchronous �In(H)
-secrecy. The following propo-

sition makes this precise. Let fhi be the information function that extracts a high

input trace prefix from a point in exactly the same way that �In(H)
extracts it

from the infinite trace.

Proposition 10 If a synchronous trace system Σ satisfies separability (resp., gen-

eralized noninterference), then H maintains synchronous secrecy (resp., synchronous

fhi-secrecy) with respect to L in R(Σ).

The converse to Proposition 10 is not quite true. There is a subtle but sig-

nificant difference between McLean’s framework and ours. McLean works with

infinite traces; separability and generalized noninterference are defined with re-

spect to traces rather than sets of points (i.e., trace prefixes). To see the impact of

this, consider a system Σ where the high agent inputs either infinitely many 0s or

infinitely many 1s. The output to the low agent is always finitely many 0s followed

by infinitely 1s, except for a single trace where the high agent inputs infinitely

many 0s and the low agent inputs infinitely many 0s. Thus, the system consists

of the following traces, where we have omitted the low inputs since they do not
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matter, and the high outputs, which can taken to be constant:

(0k1∞, 0∞), k = 0, 1, 2, 3, . . .

(0k1∞, 1∞), k = 0, 1, 2, 3, . . .

(0∞, 0∞).

In the system R(Σ), H maintains synchronous secrecy and thus synchronous fhi-

secrecy with respect to L, because by looking at any finite trace prefix, L cannot

tell whether the high inputs have been 0s or 1s. However, Σ does not satisfy sepa-

rability or generalized interference. If L “sees” infinitely many 0s, he immediately

knows that the high inputs have been 0s. This seems unreasonable. After all,

agents only makes observations at finite points in time.

Note that if t is a trace where the low outputs are all 0s and the high inputs are

all 1s, each finite prefix of the trace t is a prefix of a trace in Σ, even though t is

not in Σ. This turns out to be the key reason that the system satisfies synchronous

secrecy but not separability.

Definition 24 A synchronous trace system Σ is limit closed [16] if, for all syn-

chronous traces t, we have t ∈ Σ iff for every time k there exists a trace t′ ∈ Σ

such that t′k = tk.

Under the assumption of limit closure, we do get the converse to Proposition 10.

Proposition 11 A limit-closed synchronous trace system Σ satisfies separability

(resp. generalized noninterference) iff H maintains synchronous secrecy (resp.,

synchronous fhi-secrecy) with respect to L in R(Σ).

While we believe that it is unreasonable in general to assume that an agent’s

view includes the entire run (as McLean’s definitions implicitly do), these re-
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sults nonetheless demonstrate the close connection between our definition of syn-

chronous f -secrecy and security properties such as separability and generalized

noninterference.

Up to now we have considered a synchronous trace model, where the input

and output events of high and low users occur in lockstep. However, many trace-

based definitions of security are given in an asynchronous setting. We consider a

number of definitions of secrecy in this setting. For uniformity we use terminology

similar to that of Mantel [54], who has carefully compiled a variety of well-known

trace-based properties into a single framework.

In Mantel’s framework, traces are not infinite sequences of input/output value

tuples, but finite sequences of input/output events. As before, let the set Ev

consist of high and low input and output events. Let α range over elements of Ev.

If l, l′ ∈ Ev(L) and h, h′ ∈ Ev(H), a possible system trace could be

t = 〈l, h, l, h′, h′, l′, l′, l, h〉.

We define trace restriction as before. Given t above, for example, we have

t�L = 〈l, l, l′, l′, l〉.

Note that because asynchronous traces are sequences of events rather than tuples,

restriction ignores high events altogether. This means that a low view of the system

may remain completely unchanged even as many high input events occur.

An asynchronous trace system is a set of traces that is closed under trace

prefixes. There is a straightforward way of associating with each system a set of

runs. A set T of traces is run-like if, for all traces t1 and t2 in T , either t1 is a prefix

of t2 or t2 is a prefix of t1. Intuitively, a run corresponds to a maximal run-like set

of traces. More formally, let T be a maximal run-like set of traces. Note that if T
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is infinite, then for all n ≥ 0 there exists exactly one trace in T of length n (where

the length of 〈α0, . . . , αn−1〉 is n); if T is finite, then there is some N ≥ 0 such that

T has exactly one trace of length n for all n ≤ N . If T is infinite, let the run rT be

such that rT (m) = 〈tm �L, tm �H〉, where tm is the unique trace in T of length m.

If T is finite, let rT be such that rT (m) = 〈tm �L, tm �H〉 if m ≤ N , where N is the

length of the longest trace in T , and rT (m) = rT (N) if m ≥ N ; that is, the final

state repeats forever. Given an asynchronous trace system Σ, let R(Σ) denote the

set of all runs of the form rT , where T is a maximal set of run-like traces in Σ.

Trace-based security properties are usually expressed as closure properties on

sets of traces, much like our possibilistic definitions of secrecy; see [53] for more de-

tails. We focus here on the definitions of asynchronous separability and generalized

noninterference given by Zakinthinos and Lee [94].

Definition 25 An asynchronous trace system Σ satisfies asynchronous separa-

bility if, for all traces t, t′ ∈ Σ, if t′′ is a trace that results from an arbitrary

interleaving of the traces t�L and t′ �H, then t′′ ∈ Σ.

The definition of generalized noninterference is slightly more complicated, because

the trace that results from interleaving does not include high inputs:

Definition 26 An asynchronous trace system Σ satisfies asynchronous generalized

noninterference if, for all traces t, t′ ∈ Σ, if t′′ is a trace that results from an

arbitrary interleaving of the traces t�L and t′ �In(H), there exists a trace t′′′ such

that t′′′ �(Ev(L) ∪ In(H)) = t′′ �(Ev(L) ∪ In(H)).

It is straightforward to relate these definitions to secrecy. Exactly as in the

synchronous case, let fhi be an information function that extracts a high input

trace prefix from a point: if rT (m) = 〈t�L, t�H〉, let fhi(r
T ,m) = t�In(H).



90

Proposition 12 If Σ is an asynchronous trace system that satisfies asynchronous

separability (resp. asynchronous generalized noninterference), then H maintains

total secrecy (resp. total fhi-secrecy) with respect to L in R(Σ).

The converse of Proposition 12 does not necessarily hold. We demonstrate this

by providing a counterexample that works for both separability and generalized

noninterference. Suppose that there are no high output events, only one low out-

put event lo, and arbitrary sets In(L) and In(H) of low and high input events,

respectively. Consider the system consisting of all traces t involving these events

such that lo occurs at most once in t, and when it occurs, it does not follow any

high input events. In R(Σ), H maintains total secrecy and fhi-secrecy with respect

to L, because any local state for L is compatible with any local state for H. (Be-

cause the system is asynchronous, L learns nothing by seeing lo: when L sees lo,

he thinks it possible that arbitrarily many high input events could have occurred

after lo. Furthermore, L learns nothing about H when he does not see lo: it is al-

ways possible that no high input events have occurred and that lo may yet occur.)

However, Σ does not satisfy asynchronous separability or asynchronous general-

ized noninterference, because interleavings where a high input event precedes lo

are ruled out by construction.

This example illustrates a potential weakness of our approach to secrecy. Al-

though H maintains total secrecy with respect to L in R(Σ), there is a sense in

which L learns something about H. Consider a point (r,m) in R(Σ) at which L

has not seen lo. At that point, L knows that if a high event has occurred, he will

never see lo. This knowledge does not violate secrecy, because it does not depend

on the local state of H; it is not an H-local fact. But there is a sense in which

this fact can be said to be “about” H: it is information about a correlation be-
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tween high events and a particular low event. However, it is unclear whether this

constitutes an information flow; at any rate, we have not been able to construct

an example where this knowledge is a problem. But it is worth pointing out that

all of our definitions of secrecy aim to protect the local state of some particular

user, and therefore that any “secret information” that cannot be characterized as

a local proposition is not protected.

In any case, we can show that total secrecy and separability are equivalent

if we assume a particularly strong form of asynchrony that rules out a temporal

dependence between high and low events. Formally, Σ is closed under interleavings

if for all asynchronous traces t and t′, if t ∈ Σ, t′ � L = t � L and t′ �H = t �H,

then t′ ∈ Σ. Though this requirement allows L to learn about high events that

may occur in the future (or that have possibly occurred in the past), it rules out

any knowledge of the ordering of high and low events in a given run. With this

requirement, total secrecy and asynchronous separability coincide.

Proposition 13 If Σ is an asynchronous trace system that is closed under inter-

leavings, then Σ satisfies asynchronous separability iff H maintains total secrecy

with respect to L in R(Σ).

A similar result is true for generalized noninterference and fhi-secrecy if we

modify the definition of closure under interleavings to allow L to learn something

about the ordering of high output events; we omit the details.

5.1.2 Secrecy and user strategies

Program P1, described in Section 3.2.4, allows a high agent to transmit arbitrarily

long data strings directly to a low agent even though the high agent’s actual input
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values remain secret. We described one possible way to model the lack of secrecy

in the resulting system, by assuming that the string that high wants to transmit

is included in his initial local state. This example demonstrates that generalized

noninterference (as defined in the previous section) is insufficient to ensure that one

agent cannot interfere with another, even if we restrict our concern to possibilistic

information flows. By using a clever-enough strategy, an agent may be able to

exploit the nondeterminism of a system to transmit data to another agent.

Wittbold and Johnson, who first introduced the insecure one-time pad ex-

ample [93], also introduced nondeducibility on strategies to protect the strategy

employed by high agents. We modify their definition slightly so that it is compat-

ible with McLean’s framework of synchronous traces. A strategy ωH is a function

from a high input/output trace prefix tk �H to a high input value hi ∈ In(H).

Intuitively, a strategy tells the high agent what to do at each step, given what he

has already seen and done. A trace t is consistent with a strategy ωH if, for all k,

ωH(tk−1 �H) = h
(k)
i , where h

(k)
i is the high input value of the kth tuple in t. A

synchronous trace system Σ satisfies nondeducibility on strategies if, for all traces

t ∈ Σ and every high strategy ωH consistent with some trace in Σ, there exists

a trace t′ that is consistent with ωH such that t′ � L = t � L. If the strategy of

the high agent is included as part of her local state, and fprot is an H-information

function that extracts the strategy of the high agent from the local state, then it is

straightforward to show that nondeducibility on strategies is simply synchronous

fprot -secrecy.

Gray and Syverson [32] extend nondeducibility on strategies to probabilistic

systems using the Halpern-Tuttle framework. In Gray and Syverson’s terminology,

low and high agents use probabilistic strategies ωL and ωH , respectively. Again,
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the strategies (ωL and ωH) determine what the agents will input next, given what

they have seen and done so far. The system is assumed to have a fixed probability

distribution O that determines its output behavior, given the inputs and outputs

seen so far. Formally, for each trace prefix t of length k, ωH(· | (t � H)) is a

probability measure on high input events that occur at time k + 1, given the

restriction of t to the high input/output; similarly, ωL(· | (t � L)) is a probability

measure on low input events that occur at time k + 1 and O(· | t) is a probability

measure on output events that occur at time k + 1, given t. Gray and Syverson

require that the choices made by low agent, the high agent, and the system be

probabilistically independent at each time step. With this assumption, ωH , ωL,

and O determine a conditional distribution that we denote µL,H,O, where

µL,H,O(〈li, hi, lo, ho〉 | t) = ωL(li | (t�L)) · ωH(hi | (t�H)) · O(lo, ho | t).

Let Λ and Γ be countable sets of strategies for the low and high agent, re-

spectively.1 Given Λ, Γ, and O (and, implicitly, sets of low and high input and

output values), we can define an adversarial probability system R∗(Λ,Γ,O) in a

straightforward way. Let Σ consist of all synchronous traces over the input and

out values. For each joint strategy (ωL, ωH) ∈ Λ×Γ, let R(Σ, ωL, ωH) consist of all

runs defined as in our earlier mapping from synchronous traces to runs, except that

now we include ωL in the low agent’s local state and ωH in the high agent’s local

state. Let R(Σ,Λ×Γ) , ∪(ωL,ωH)∈Λ×ΓR(Σ, ωL, ωH). We can partition R(Σ,Λ×Γ)

according to the joint strategy used; let D(Λ,Γ) denote this partition. Given the

independence assumptions, the joint strategy (ωL, ωH) also determines a probabil-

1Gray and Syverson take Λ and Γ to consist of all possible probabilistic strategies
for the low and high agent, respectively, but their approach still makes sense if Λ
and Γ are arbitrary sets of strategies, and it certainly seems reasonable to assume
that there are only countably many strategies that agents might be using.
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ity µL,H,O on R(Σ, ωL, ωH). Let ∆(Λ,Γ,O) , {µL,H,O : ωL ∈ Λ, ωH ∈ Γ}, and

let R∗(Λ,Γ,O) , (R(Σ,Λ × Γ),D,∆}. We can now define Gray and Syverson’s

notion of secrecy in the context of these adversarial systems. (Again, L and H

refer to the low agent and the high agent.)

Definition 27 An adversarial system R∗(Λ,Γ,O) satisfies probabilistic noninter-

ference if, for all low strategies ωL ∈ Λ, points (r,m) where L’s strategy is ωL, and

high strategies ωH , ωH′ ∈ Γ, we have

µ(L,H,O)(KL(r,m)) = µ(L,H′,O)(KL(r,m)).

Theorem 6 The following are equivalent:

(a) R∗(Λ,Γ,O) satisfies probabilistic noninterference;

(b) L obtains no evidence about H’s strategy (in the sense of Definition 13) in

R∗(Λ,Γ,O);

(c) H maintains generalized run-based probabilistic fprot-secrecy with respect to L

in (R(Σ,Λ×Γ),MINIT (∆(Λ,Γ,O))), where fprot is the information function

that maps from H’s local state to H’s strategy;

(d) H maintains generalized probabilistic synchronous fprot-secrecy with respect

to L in the standard generalized probability system determined by (R(Σ,Λ×

Γ),MINIT (∆(Λ,Γ,O))).

Proof: The fact that (a) implies (b) is immediate from the definitions, since H’s

initial choice is the strategy ωH . The equivalence of (b) and (c) follows from

Theorem 5. Finally, since the traces in Σ are synchronous, the equivalence of (c)

and (d) follows from Proposition 8. ut
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5.2 Related definitions of anonymity

5.2.1 Knowledge-based definitions of anonymity

As mentioned in the introduction, we are not the first to use knowledge to han-

dle definitions of anonymity. In particular, Syverson and Stubblebine [89] use an

epistemic logic to formalize anonymity. However, the focus of their work is very

different from ours. They describe a logic for reasoning about anonymity and a

number of axioms for the logic. An agent’s knowledge is based, roughly speak-

ing, on his recent actions and observations, as well as what follows from his log

of system events. The first five axioms that Syverson and Stubblebine give are

the standard S5 axioms for knowledge. There are well-known soundness and com-

pleteness results relating the S5 axiom system to Kripke structure semantics for

knowledge [20]. However, they give many more axioms, and they do not attempt

to give a semantics for which their axioms are sound. Our focus, on the other hand,

is completely semantic. We have not tried to axiomatize anonymity. Rather, we

try to give an appropriate semantic framework in which to consider anonymity.

In some ways, Syverson and Stubblebine’s model is more detailed than the

model used here. Their logic includes many formulas that represent various actions

and facts, including the sending and receiving of messages, details of encryption

and keys, and so on. They also make more assumptions about the local state of

a given agent, including details about the sequence of actions that the agent has

performed locally, a log of system events that have been recorded, and a set of

facts of which the agent is aware. While these extra details may accurately reflect

the nature of agents in real-world systems, they are orthogonal to our concerns

here. In any case, it would be easy to add such expressiveness to our model as
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well, simply by including these details in the local states of the various agents.

It is straightforward to relate our definitions to those of Syverson and Stub-

blebine. They consider facts of the form φ(i), where i is a principal, i.e., an agent.

They assume that the fact φ(i) is a single formula in which a single agent name

occurs. Clearly, θ(i, a) is an example of such a formula. In fact, Syverson and

Stubblebine assume that if φ(i) and φ(j) are both true, then i = j. For the θ(i, a)

formulas, this means that θ(i, a) and θ(i′, a) cannot be simultaneously true: at

most one agent can perform an action in a given run, exactly as in the setup of

Proposition 9.

There is one definition in [89] that is especially relevant to our discussion; the

other relevant definitions presented there are similar. A system is said to satisfy

(≥ k)-anonymity with respect to observer o if the following formula is valid:

φ(i) ⇒ ∃i1, . . . , ik−1 . Po(φ(i)) ∧ Po(φ(i1)) ∧ · · · ∧ Po(φ(ik−1)).

This definition says that if φ(i) holds, there must be at least k agents, including i,

that the observer suspects. The definition is essentially equivalent to our definition

of (k − 1)-anonymity. If Po(φ(i′)) is true for k − 1 agents other than i, then the

formula must hold, because φ(i) ⇒ Po(φ(i)) is valid.

5.2.2 CSP and anonymity

A great deal of work on the foundations of computer security has used process

algebras such as CCS and CSP [62, 46] as the basic system framework [22, 78].

Process algebras offer several advantages: they are simple, they can be used for

specifying systems as well as system properties, and model-checkers are available

that can be used to verify properties of systems described using their formalisms.
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Schneider and Sidiropoulos [79] use CSP both to characterize one type of

anonymity and to describe variants of the dining cryptographers problem [5]. They

then use a model-checker to verify that their notion of anonymity holds for those

variants of the problem. To describe their approach, we need to outline some of the

basic notation and semantics of CSP. To save space, we give a simplified treatment

of CSP here. (See Hoare [46] for a complete description of CSP.) The basic unit

of CSP is the event. Systems are modeled in terms of the events that they can

perform. Events may be built up several components. For example, “donate.$5”

might represent a “donate” event in the amount of $5. Processes are the systems,

or components of systems, that are described using CSP. As a process unfolds

or executes, various events occur. For our purposes, we make the simplifying as-

sumption that a process is determined by the event sequences it is able to engage

in.

As with some of the previous system models considered, we can associate with

every process a set of traces. Intuitively, each trace in the set associated with

process P represents one sequence of events that might occur during an execution

of P . Informally, CSP event traces correspond to finite prefixes of runs, except

that they do not explicitly describe the local states of agents and do not explicitly

describe time.

Schneider and Sidiropoulos define a notion of anonymity with respect to a set A

of events. Typically, A consists of events of the form i.a for a fixed action a, where

i is an agent in some set that we denote IA. Intuitively, anonymity with respect to

A means that if any event in A occurs, it could equally well have been any other

event in A. In particular, this means that if an agent in IA performs a, it could

equally well have been any other agent in IA. Formally, given a set Σ of possible
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events and A ⊆ Σ, let fA be a function on traces that, given a trace t, returns a

trace fA(t) that is identical to t except that every event in A is replaced by a fixed

event α /∈ Σ. A process P is strongly anonymous on A if f−1
A (fA(P )) = P , where

we identify P with its associated set of traces. This means that all the events in

A are interchangeable; by replacing any event in A with any other we would still

get a valid trace of P .

Schneider and Sidiropoulos give several very simple examples that are useful for

clarifying this definition of anonymity. One is a system where there are two agents

who can provide donations to a charity, but where only one of them will actually

do so. Agent 0, if she gives a donation, gives $5, and agent 1 gives $10. This is

followed by a “thanks” from the charity. The events of interest are “0.gives” and

“1.gives” (representing events where 0 and 1 make a donation), “$5” and “$10”

(representing the charity’s receipt of the donation), “thanks,” and “STOP” (to

signify that the process has ended). There are two possible traces:

1. 0.gives → $5 → “thanks” → STOP.

2. 1.gives → $10 → “thanks” → STOP.

The donors require anonymity, and so we require that the CSP process is strongly

anonymous on the set {0.gives, 1.gives}. In fact, this condition is not satisfied

by the process, because “0.gives” and “1.gives” are not interchangeable. This is

because “0.gives” must be followed by “$5,” while “1.gives” must be followed by

“$10.” Intuitively, an agent who observes the traces can determine the donor by

looking at the amount of money donated.

We believe that Schneider and Sidiropoulos’s definition is best understood as

trying to capture the intuition that an observer who sees all the events generated
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by P , except for events in A, does not know which event in A occurred. We can

make this precise by translating Schneider and Sidiropoulos’s definition into our

framework. The first step is to associate with each process P a corresponding set

of runs RP . We present one reasonable way of doing so here, which suffices for our

purposes. In future work, we hope to explore the connection between CSP and the

runs and systems framework in more detail.

Recall that a run is an infinite sequence of global states of the form

(se, s1, . . . , sn),

where each si is the local state of agent i, and se is the state of the environment.

Therefore, to specify a set of runs, we need to describe the set of agents, and then

explain how to derive the local states of each agent for each run. There is an obvious

problem here: CSP has no analogue of agents and local states. To get around this,

we could simply tag all events with an agent (as Schneider and Sidiropoulos in

fact do for the events in A). However, for our current purposes, a much simpler

approach will do. The only agent we care about is a (possibly mythical) observer

who is able to observe every event except the ones in A. Moreover, for events in

A, the observer knows that something happened (although not what). There may

be other agents in the system, but their local states are irrelevant. We formalize

this as follows.

Fix a process P over some set Σ of events, and let A ⊆ Σ. Following Schneider

and Sidiropoulos, for the purposes of this discussion, assume that A consists of

events of the form i.a, where i ∈ IA and a is some specific action. We say that a

system R is compatible with P if there exists some agent o such that the following

two conditions hold:

• for every run r ∈ R and every time m, there exists a trace t ∈ P such that
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t = re(m) and fA(t) = ro(m);

• for every trace t ∈ P , there exists a run r ∈ R such that re(|t|) = t and

ro(|t|) = fA(t) (where |t| is the number of events in t).

Intuitively, R represents P if (1) for every trace t in P , there is a point (r,m) in R

such that, at this point, exactly the events in t have occurred (and are recorded in

the environment’s state) and o has observed fA(t), and (2) for every point (r,m) in

R, there is a trace t in P such that precisely the events in re(m) have happened in t,

and o has observed fA(t) at (r,m). We say that the interpreted system I = (R, π)

is compatible with P if R is compatible with P and if (I, r,m) |= θ(i, a) whenever

the event i.a is in the event sequence re(m
′) for some m′.

We are now able to make a formal connection between our definition of anonymity

and that of Schneider and Sidiropoulos. As in the setup of Proposition 9, we as-

sume that an anonymous action a can be performed only once in a given run.

Theorem 7 If I = (R, π) is compatible with P , then P is strongly anonymous on

the alphabet A if and only if for every agent i ∈ IA, the action a performed by i is

anonymous up to IA with respect to o in I.

Up to now, we have assumed that the observer o has access to all the infor-

mation in the system except which event in A was performed. Schneider and

Sidiropoulos extend their definition of strong anonymity to deal with agents that

have somewhat less information. They capture “less information” using abstrac-

tion operators. Given a process P , there are several abstraction operators that can

give us a new process. For example the hiding operator, represented by \, hides

all events in some set C. That is, the process P\C is the same as P except that

all events in C become internal events of the new process, and are not included
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in the traces associated with P\C. Another abstraction operator, the renaming

operator, has already appeared in the definition of strong anonymity: for any set

C of events, we can consider the function fC that maps events in C to a fixed

new event. The difference between hiding and renaming is that, if events in C are

hidden, the observer is not even aware they took place. If events in C are renamed,

then the observer is aware that some event in C took place, but does not know

which one.

Abstraction operators such as these provide a useful way to model a process

or agent who has a distorted or limited view of the system. In the context of

anonymity, they allow anonymity to hold with respect to an observer with a limited

view of the system in cases where it would not hold with respect to an observer who

can see everything. In the anonymous donations example, hiding the events $5 and

$10, i.e., the amount of money donated, would make the new process P\{$5, $10}

strongly anonymous on the set of donation events. Formally, given an abstraction

operator ABSC on a set of events C, we have to check the requirement of strong

anonymity on the process ABSC(P ) rather than on the process P .

Abstraction is easily captured in our framework. It amounts simply to changing

the local state of the observer. For example, anonymity of the process P\C in our

framework corresponds to anonymity of the action a for every agent in IA with

respect to an observer whose local state at the point (r,m) is fA(re(m))\C. We

omit the obvious analogue of Theorem 7 here.

A major advantage of the runs and systems framework is that definitions of

high-level properties such as anonymity do not depend on the local states of the

agents in question. If we want to model the fact that an observer has a limited

view of the system, we need only modify her local state to reflect this fact. While
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some limited views are naturally captured by CSP abstraction operators, others

may not be. The definition of anonymity should not depend on the existence of

an appropriate abstraction operator able to capture the limitations of a particular

observer.

As we have demonstrated, our approach to anonymity is compatible with the

approach taken in [79]. Our definitions are stated in terms of actions, agents,

and knowledge, and are thus very intuitive and flexible. The generality of runs

and systems allows us to have simple definitions that apply to a wide variety of

systems and agents. The low-level CSP definitions, on the other hand, are more

operational than ours, and this allows easier model-checking and verification. Fur-

thermore, there are many advantages to using process algebras in general: systems

can often be represented much more succinctly, and so on. This suggests that both

approaches have their advantages. Because CSP systems can be represented in the

runs and systems framework, however, it makes perfect sense to define anonymity

for CSP processes using the knowledge-based definitions we have presented here.

If our definitions turn out to be equivalent to more low-level CSP definitions, this

is ideal, because CSP model-checking programs can then be used for verification.

A system designer simply needs to take care that the runs-based system derived

from a CSP process (or set of processes) represents the local states of the different

agents appropriately.

5.2.3 Anonymity and function-view semantics

Hughes and Shmatikov [47] introduce function views and function-view opaqueness

as a way of expressing a variety of confidentiality properties in a succinct and

uniform way. Their main insight is that requirements such as anonymity involve
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restrictions on relationships between entities such as agents and actions. Because

these relationships can be expressed by functions from one set of entities to another,

hiding information from an observer amounts to limiting an observer’s view of

the function in question. For example, anonymity properties are concerned with

whether or not an observer is able to connect actions with the agents who performed

them. By considering the function from the set of actions to the set of agents who

performed those actions, and specifying the degree to which that function must be

opaque to observers, we can express anonymity using the function-view approach.

To model the uncertainty associated with a given function, Hughes and Shma-

tikov define a notion of function knowledge to explicitly represent an observer’s

partial knowledge of a function. Function knowledge focuses on three particular

aspects of a function: its graph, image, and kernel. (Recall that the kernel of

a function f with domain X is the equivalence relation ker on X defined by

(x, x′) ∈ ker iff f(x) = f(x′).) Function knowledge of type X → Y is a triple

N = (F, I,K), where F ⊆ X×Y , I ⊆ Y , and K is an equivalence relation on X. A

triple (F, I,K) is consistent with f if f ⊆ F , I ⊆ imf , and K ⊆ kerf . Intuitively,

a triple (F, I,K) that is consistent with f represents what an agent might know

about the function f . Complete knowledge of a function f , for example, would be

represented by the triple (f, imf, kerf).

With respect to anonymity (and other confidentiality properties), we are inter-

ested not in what an agent knows, but in what an agent does not know. This is

formalized by Hughes and Shmatikov in terms of opaqueness conditions for func-

tion knowledge. If N = 〈F, I,K〉 is consistent with f : X → Y , then, for example,

N is k-value opaque if |F (x)| ≥ k for all x ∈ X. That is, N is k-value opaque if

there are k possible candidates for the value of f(x), for all x ∈ X. Similarly, N
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is Z-value opaque if Z ⊆ F (x) for all x ∈ X. In other words, for each x in the

domain of f , no element of Z can be ruled out as a candidate for f(x). Finally, N

is absolutely value opaque if that N is Y -value opaque.

Opaqueness conditions are closely related to the nonprobabilistic definitions of

anonymity given in Section 4.1. Consider functions from X to Y , where X is a

set of actions and Y is a set of agents, and suppose that some function f is the

function that, given some action, names the agent who performed the action. If

we have k-value opaqueness for some view of f (corresponding to some observer

o), this means, essentially, that each action a in X is k-anonymous with respect

to o. Similarly, the view is IA-value opaque if the action is anonymous up to IA

for each agent i ∈ IA. Thus, function view opaqueness provides a concise way of

describing anonymity properties.

To make these connections precise, we need to explain how function views can

be embedded within the runs and systems framework. Hughes and Shmatikov

already show how we can define function views using Kripke structures, the stan-

dard approach for giving semantics to knowledge. A minor modification of their

approach works in systems too. Assume we are interested in who performs an

action a ∈ X, where X, intuitively, is a set of “anonymous actions.” Let Y be the

set of agents, including a “nobody agent” denoted N , and let f be a function from

X to Y . Intuitively, f(a) = i if agent i performs action a, and f(a) = N if no

agent performs action a. The value of the function f will depend on the point. Let

fr,m be the value of f at the point (r,m). Thus, fr,m(a) = i if i performs a in run

r. 2 We can now easily talk about function opaqueness with respect to an observer

o. For example, f is Z-value opaque at the point (r,m) with respect to o if, for all

2Note that for f(r,m) to be well-defined, it must be the case that only one agent
can ever perform a single action.
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z ∈ Z, there exists a point (r′,m′) such that r′o(m
′) = ro(m) and f(r′,m′)(x) = z.

In terms of knowledge, Z-value opaqueness says that for any value x in the range

of f , o thinks it possible that any value z ∈ Z could be the result of f(x). In-

deed, Hughes and Shmatikov say that function-view opaqueness, defined in terms

of Kripke structure semantics, is closely related to epistemic logic. The following

proposition makes this precise; it would be easy to state similar propositions for

other kinds of function-view opaqueness.

Proposition 14 Let I = (R, π) be an interpreted system that satisfies (I, r,m) |=

f(x) = y whenever f(r,m)(x) = y. In system I, f is Z-value opaque for observer o

at the point (r,m) if and only if

(I, r,m) |=
∧

x∈X

∧

z∈Z

Po[f(x) = z].

Proof: This result follows immediately from the definitions. ut

Stated in terms of knowledge, function-view opaqueness already looks a lot like

our definitions of anonymity. Given f (or, more precisely, the set {f(r,m)} of func-

tions) mapping actions to agents, we can state a theorem connecting anonymity to

function-view opaqueness. There are two minor issues to deal with, though. First,

our definitions of anonymity are stated with respect to a single action a, while the

function f deals with a set of actions. We can deal with this by taking the domain

of f to be the singleton {a}. Second, our definition of anonymity up to a set IA

requires the observer to suspect agents in IA only if i actually performs the action

a. (Recall this is also true for Syverson and Stubblebine’s definitions.) IA-value

opaqueness requires the observer to think many agents could have performed an

action even if nobody has. To deal with this, we require opaqueness only when the

action has been performed by one of the agents in IA.
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Theorem 8 Suppose that (I, r,m) |= θ(i, a) exactly if f(r,m)(a) = i. Then action

a is anonymous up to IA with respect to o for each agent i ∈ IA if and only if at

all points (r,m) such that f(r,m)(a) ∈ IA, f is IA-value opaque with respect to o.

As with Proposition 14, it would be easy to state analogous theorems connecting

our other definitions of anonymity, including minimal anonymity, total anonymity,

and k-anonymity, to other forms of function-view opaqueness. We omit the details

here.

The assumptions needed to prove Theorem 8 illustrate two ways in which our

approach may seem to be less general than the function-view approach. First, all

our definitions are given with respect to a single action, rather than with respect

to a set of actions. However, it is perfectly reasonable to specify that all actions in

some set A of actions be anonymous. Then we could modify Theorem 8 so that the

function f is defined on all actions in A. (We omit the details.) Second, our def-

initions of anonymity only restrict the observer’s knowledge if somebody actually

performs the action. This is simply a different way of defining anonymity. As men-

tioned previously, we are not trying to give a definitive definition of anonymity,

and it certainly seems reasonable that someone might want to define or specify

anonymity using the stronger condition. At any rate, it would be straightfor-

ward to modify our definitions so that the implications, involving θ(i, a), are not

included.

Hughes and Shmatikov argue that epistemic logic is a useful language for ex-

pressing anonymity specifications, while CSP is a useful language for describing

and specifying systems. We agree with both of these claims. They propose func-

tion views as a useful interface to mediate between the two. We have tried to argue

here that no mediation is necessary, since the multiagent systems framework can
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also be used for describing systems. (Indeed, the traces of CSP can essentially

be viewed as runs.) Nevertheless, we do believe that function views can be the

basis of a useful language for reasoning about some aspects of confidentiality. We

can well imagine adding abbreviations to the language that let us talk directly

about function views. (We remark that we view these abbreviations as syntactic

sugar, since these are notions that can already be expressed directly in terms of

the knowledge operators we have introduced.)

On the other hand, we believe that function views are insufficiently expressive.

One obvious problem is adding probability. While it is easy to add probability

to systems, as we have shown, and to capture interesting probabilistic notions of

anonymity, it is far from clear how to do this if we take function views triples as

primitive.

To sum up, we would argue that to reason about knowledge and probability,

we need to have possible worlds as the underlying semantic framework. Using

the multiagent systems approach gives us possible worlds in a way that makes

it particularly easy to relate them to systems. Within this semantic framework,

function views may provide a useful syntactic construct with which to reason about

anonymity and other confidentiality properties.



Chapter 6

Information-Flow Security for

Interactive Programs
In this chapter we consider secrecy in systems described by imperative programs.

As mentioned in the Introduction, we are concerned with interactive programs,

which interact with users at runtime, rather than batch-job programs that can be

characterized as a function from inputs to outputs. Our language and security

conditions synthesize two branches of information-flow security research, in that

we leverage the trace-based definitions that have been proposed for interactive sys-

tems to provide novel security conditions for imperative programs. Furthermore,

our interactive programming language can be viewed as a specification language

for interactive systems that more closely approximates the implementation of real

programs than the abstract system models that have previously been used. Our

goal is to leverage the definitions of secrecy given in Chapter 3 to state noninter-

ference requirements for interactive systems directly in terms of the operational

semantics of an imperative language.

In giving definitions of information-flow security for interactive programs, we

pay special attention to the issue of nondeterminism, which arises in real-world

systems for a number of reasons (including concurrency and probabilistic random-

ization). Nondeterminism is orthogonal to interactivity, but the interplay between

information flow and nondeterminism is often quite subtle. We examine two kinds

of nondeterministic choices: those which we assume are made probabilistically, and

those which we are unable or unwilling to assign probabilities. We refer to the for-

mer as probabilistic choice, and to the latter as nondeterministic choice. Following

108
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the approach taken in Chapter 3, we factor out nondeterministic choice so that we

can reason about it in isolation from probabilistic choice. By explicitly represent-

ing the resolution of nondeterministic choice in the language semantics, we adapt

our security condition to rule out refinement attacks in which the resolution of

nondeterministic choice results in insecure information flows. (We thus explicitly

rule out possibilistic breaches of secrecy, as discussed in earlier chapters.) We also

give a probabilistic security condition based on Definition 13 in Section 3.2.5.

6.1 User strategies

It might seem at first that information-flow security for interactive programs can

be obtained by adopting the same approach used for batch-job programs, that

is, by preventing low users from learning anything about high inputs. However,

several papers, starting with Wittbold and Johnson [93], have described systems in

which high users can transmit information to low users even though low users learn

nothing about the high inputs. This is demonstrated by Program P1, which we

described in Section 3.2.4. We reproduce P1 here. Recall that input x from C reads

a value from a channel named C and stores it in variable x; similarly, output e to C

outputs the value of expression e on a channel named C. Assume that low users

may use only channel L, that high users may use channel H, and that no users

may observe the values of program variables. Infix operator p8 executes its first

operand with probability p and its second operand with probability 1 − p.

P1 : while (true) do

x := 0 0.58 x := 1;

output x to H;

input y from H;

output x xor (y mod 2) to L
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Because the probabilistic choice is resolved in a way that is unpredictable to the

low user, he will be unable to determine the inputs on channel H: for any output

on L, the input on H could have been either 0 or 1. Yet the high user can still

communicate an arbitrary confidential bit z to channel L at each iteration of the

loop by choosing z xor x as input on H.

The confidential information z is never directly acquired by the program: it is

neither the initial value of a program variable nor an input supplied on a channel.

As Wittbold and Johnson observe, maintaining the secrecy of all high inputs (and

even the initial values of program variables) is therefore insufficient to preserve the

secrecy of confidential information.

In Program P1, the high user is able to communicate arbitrary confidential

information by selecting his next input as a function of outputs he has previously

received. This suggests that if we want to prevent confidential information from

flowing to low users, we should protect the secrecy of the function that high users

employ to select inputs. Following Wittbold and Johnson’s terminology, we call

this function a user strategy. In the remainder of this section we develop the

mathematical structures needed to define user strategies formally.

6.1.1 Types, users, and channels

We assume a set L of security types with ordering relation ≤ and use metavariable

τ to range over security types. For simplicity, we assume that L equals {L,H} with

L ≤ H. (Our results generalize to partial orders of security types.) Security type

L represents low confidentiality, and H represents high confidentiality. The order-

ing ≤ indicates the relative restrictiveness of security types: high-confidentiality

information is more restricted in its use than low-confidentiality information.
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Users are agents (including humans and programs) that interact with executing

programs. We associate with each user a security type indicating the highest level

of confidential information that the user is permitted to read. Conservatively, we

assume that users of the same security type may collaborate while attempting to

subvert the security of a program. We can thus simplify our security analyses by

reasoning about exactly two users, one representing the pooled knowledge of low

users and another representing the pooled knowledge of high users.

We also assume the existence of channels with blocking input and nonblocking

output. Although input is blocking, we assume that all inputs prompted for are

eventually supplied. Each channel is associated with a security type τ , and only

users of that type are permitted to use the channel. For simplicity, we assume

that there are exactly two channels, L and H. We also assume that the values

that are input and output on channels are integers. These are not fundamental

restrictions; our results could be extended to allow multiple channels of each type,

to allow high users to observe low channels, and to allow more general data types.

6.1.2 Traces

An event is the transmission of an input or output on a channel. Denote the input

of value v on the channel of type τ as in(τ, v) and the output of v on τ as out(τ, v).

Let Ev(τ) be the set of all events that could occur on channel τ :

Ev(τ) ,
⋃

v∈Z

{in(τ, v), out(τ, v)}.

Let Ev be the set of all events:

Ev ,
⋃

τ∈L

Ev(τ).

We use metavariable α to range over events in Ev.
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A trace is a finite list of events. Given E ⊆ Ev, an event trace on E is a

finite, possibly empty list 〈α1, . . . , αn〉 such that αi ∈ E for all i. The empty trace

is written 〈〉. The set of all traces on E is denoted Tr(E), and we abbreviate

the set of all traces Tr(Ev) as Tr. Trace equality is defined pointwise, and the

concatenation of two traces t and t′ is denoted tˆt′. A trace t′ extends trace t if

there exists a trace t′′ such that t′ = tˆt′′. The restriction of t to E, denoted t�E,

is the trace that results from removing all events not contained in E from t. We

write t � τ as shorthand for t �Ev(τ). A low trace is the low restriction t �L of a

trace t.

6.1.3 User strategies

As demonstrated by Program P1, the input supplied by a user may depend on

past events observed by that user. To capture this dependence we employ a user

strategy, which determines the input for a particular channel as a function of the

events that occur on the channel. Because events on a channel include both inputs

and outputs, this function depends on both the user’s observations and previous

actions. Formally, a user strategy for a channel with security type τ is a function of

type Tr(Ev(τ)) → Z. Let UserStrat be the set of all user strategies. (Note that,

to simulate the batch-job model, the initial inputs provided by users can be rep-

resented by a constant strategy that selects inputs without regard for past inputs

or outputs. Also, high user strategies can be extended to depend on observation

of the low channel, as described at the end of Section 6.2.)

As an example, we present a strategy that a high user could employ to transmit

an arbitrary stream of bits z1z2 . . . to the low user in Program P1. This user

strategy, g, ensures that if b was the previous output on H, then the next input on
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H is the bitwise exclusive-or of b and zi. Note that every second event on channel

H is an input event in(H, v).

g(〈α1, . . . , αn〉) =






zi xor b if αn = out(H, b) and n = 2i− 1

0 otherwise

A joint strategy is a collection of user strategies, one for each channel. Formally,

a joint strategy ω is a function of type L → UserStrat, that is, a function from

security types to user strategies. Let Strat be the set of all joint strategies.

6.2 Noninterference for interactive programs

While-programs, extended with commands for input and output, constitute our

core interactive programming language. The syntax of this language is:

(expressions) e ::= n | x | e0 ⊕ e1

(commands) c ::= skip | x := e | c0; c1 |

input x from τ | output e to τ |

if e then c0 else c1 | while e do c

Metavariable x ranges over Var, the set of all program variables. Variables take

values in Z, the set of integers. Literal values n also range over integers. Binary

operator ⊕ denotes any total binary operation on the integers.

6.2.1 Operational semantics

The execution of a program modifies the values of variables and produces events

on channels. A state determines the values of variables. Formally, a state is a

function of type Var → Z. Let σ range over states. A configuration is a 4-tuple

(c, σ, t, ω) representing a system about to execute c with state σ and joint strategy
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(Assign)

(x := e, σ, t, ω) −→ (skip, σ[x := σ(e)], t, ω)

(Seq-1)

(skip; c, σ, t, ω) −→ (c, σ, t, ω)

(Seq-2)

(c0, σ, t, ω) −→ (c′0, σ
′, t′, ω)

(c0; c1, σ, t, ω) −→ (c′0; c1, σ
′, t′, ω)

(In)

ω(τ)(t�τ) = v

(input x from τ, σ, t, ω) −→ (skip, σ[x := v], tˆ〈in(τ, v)〉, ω)

(Out)

σ(e) = v

(output e to τ, σ, t, ω) −→ (skip, σ, tˆ〈out(τ, v)〉, ω)

(If-1)

σ(e) 6= 0

(if e then c0 else c1, σ, t, ω) −→ (c0, σ, t, ω)

(If-2)

σ(e) = 0

(if e then c0 else c1, σ, t, ω) −→ (c1, σ, t, ω)

(While)

(while e do c, σ, t, ω) −→ (if e then (c; while e do c) else skip, σ, t, ω)

Figure 6.1: Operational semantics.
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ω. Trace t is the history of events produced by the system so far. Let m range

over configurations. Terminal configurations, which have no commands remaining

to execute, have the form (skip, σ, t, ω).

The operational semantics for our language is a small-step relation −→ on

configurations. Membership in the relation is denoted

(c, σ, t, ω) −→ (c′, σ′, t′, ω),

meaning that execution of command c can take a single step to command c′,

while updating the state from σ to σ′. Trace t′ extends t with any events that

were produced during the step. Note that joint strategy ω is unchanged when

a configuration takes a step; we include it in the configuration only to simplify

notation and presentation.

The inductive rules defining relation −→ are given in Figure 6.1. The rules for

commands other than input and output are all standard. In Rule Assign, σ(e)

denotes the value of expression e in state σ, and state update σ[x := v] changes

the value of variable x to v in σ. Rule In uses the joint strategy ω to determine

the next input event and appends it to the current trace, and rule Out simply

appends the output event to the current trace.

Let −→∗ be the reflexive transitive closure of −→. Intuitively, if

(c, σ, t, ω) −→∗ (c′, σ′, t′, ω),

then configuration (c, σ, t, ω) can reach configuration (c′, σ′, t′, ω) in zero or more

steps. Configuration m emits t, denoted m t, when there exists a configuration

(c, σ, t, ω) such that m −→∗ (c, σ, t, ω). Note that emitted events may include both

inputs and outputs.
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6.2.2 A strategy-based security condition

We now develop a security condition which ensures that users with access only to

channel L do not learn anything about the strategies employed by users interacting

with channel H. Since strategies encode the possible actions that users may take as

they interact with the system, protecting the secrecy of high strategies ensures that

the actions taken by high users cannot affect (or “interfere with”) the observations

of low users. As we will demonstrate in Section 6.5, the security condition can be

seen as an instance of our definitions of secrecy.

Informally, a program is secure if, for every initial state σ, any trace of events

seen on channel L is consistent with every possible user strategy for channel H.

This ensures that low users cannot learn any information, including inputs, that

high users attempt to convey—even if low users know the program text.

Definition 28 (Noninterference) A command c satisfies noninterference if for

all m = (c, σ, 〈〉, ω) and m′ = (c, σ, 〈〉, ω′) such that ω(L) = ω′(L) and for all traces

t such that m t, there exists a t′ such that t�L = t′ �L and m′  t′.

According to this condition, the high strategy ω(H) in m can be replaced by

any other high strategy without affecting the low traces emitted. Although the

condition assumes that programs begin with an empty trace of prior events, it can

be generalized to account for arbitrary traces. (See Appendix C.) Some additional

implications of this security condition are discussed below.

Initial variable values. The security condition does not protect the secrecy of the

initial values of variables. More concretely, the program output x to L is considered

secure for any x ∈ Var, whereas the program input x from H; output x to L

is obviously considered insecure. The definition thus reflects our intuition that
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high users interact with the system only via input and output events on the high

channel and have no control over the initialization of variables. Systems in which

the high user controls the initial values of some or all variables can be modeled

by prepending commands that read inputs from the high user and assign them to

variables.

Variable typings. It is not necessary to assign security types to program variables

in order to determine whether a program is secure. (A program with no high inputs,

for example, is secure regardless of its variables or their types.) Accordingly, our

security condition makes no reference to the security types of variables. This

distinguishes our work from most batch-job conditions, where variable typings are

fundamental. We do, however, employ variable typings for the static analysis

technique presented in Section 6.6.

Timing sensitivity. Our observational model is asynchronous: users do not

observe the time when events occur or the time that passes while a program is

blocking on an input command. The security condition is thus timing-insensitive.

We could incorporate timing sensitivity into the model by assuming that users

observe a “tick” event at each execution step or by tagging events with the time

at which they occur; strategies could then make use of this additional temporal

information.

Termination sensitivity. We make the standard assumption that users are

unable to observe the nontermination of a program. Nonetheless, our security

condition is termination-sensitive when low events follow commands that may not
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terminate. Consider the following program:

P2 : input x from H;

if (x = 0) then {while (true) do skip} else skip;

output 1 to L

A high user can cause this program to transmit the value 1 to a low user. Since this

would allow the low user to infer something about the high strategy, this program

is insecure according to our security condition.

We do not assume that users are able to observe the termination of a program

directly, but it would be easy to make termination observable by adding a distin-

guished termination event that is broadcast on all channels when execution reaches

a terminal configuration.

Observation of channels. We have assumed that high users cannot observe the

low channel, but this restriction can be removed in several ways. For example, it

is straightforward to amend the operational semantics to echo low events to high

channels by adding an additional high output event (prepended with a label to

distinguish it from a regular high output events) to the trace every time a low

input or output event occurs.

6.3 Nondeterministic programs

We distinguish two kinds of nondeterminism that appear in programs: probabilis-

tic choice and nondeterministic choice. Intuitively, probabilistic choice represents

explicit use of randomization, whereas nondeterministic choice represents program

behavior that is underspecified (perhaps due to unpredictable factors such as the

scheduler in a concurrent setting). Following the approach of previous work [44, 90],

we factor out the latter kind of nondeterminism by assuming that all nondetermin-

istic choices are made as if they were specified before the program began execution.
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(The implications of this approach are discussed at the end of the section.) This al-

lows reasoning about nondeterministic choice and probabilistic choice in isolation,

and our definitions of noninterference reflect the resulting separation of concerns.

In this section we extend our model to include nondeterministic choice. We return

to probabilistic choice in Section 6.4.

6.3.1 Refiners

We extend the language of Section 6.2 with nondeterministic choice:

c ::= . . . | c0 8τ c1

Each nondeterministic choice is annotated with a security type τ that is used in

the operational semantics. The need for the annotation is explained below; we

remark, however, that the type system described in Section 6.6 could be used to

infer annotations automatically, so that programmers need not specify them.

To factor out the resolution of nondeterminism, we introduce infinite lists of

binary values called refinement lists. Denote the set of all such refinement lists

as RefList. Informally, when a nondeterministic choice is encountered during

execution, the head element of a refinement list is removed and used to resolve the

choice. The program executes the left command of the nondeterministic choice if

the element is 0 and the right command if the element is 1. Refinement lists are

an operational analog of Milner’s oracle domains [61] for denotational semantics.

We do not want choices made in accordance with refinement lists to cause

unwanted information flows. More generally, nondeterministic choices should not

cause insecure information flows, even if low users can predict how the choices will

be made. While it might seem that using a single refinement list would suffice
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to ensure that no insecure information flows arise as a result of the resolution of

nondeterministic choice, the following program demonstrates that this is not the

case:
input x from H;

if (x = 0) then {skip 8H skip} else skip;

output 0 to L 8L output 1 to L

If the refinement list 〈1, 0, . . .〉 is used to execute this program, the output on

channel L will equal the input on channel H. An insecure information flow arises

because the same refinement list is used to make both low and high choices. To

eliminate this flow, we identify the security type of a choice based on its annota-

tion and require that different lists be used to resolve choices at each type. This

ensures that the number of choices made at a given security level cannot become a

covert channel. (Note that this requirement lends itself to natural implementation

techniques. For example, if choices are made by using a stream of pseudorandom

numbers, then different streams should be used to resolve high and low choices.

Or if 8 represents scheduler choices, then the scheduler should resolve choices at

each security type independently.)

A refiner is a function ψ : L → RefList that associates a refinement list with

each security type. Let Ref denote the set of all refiners. Denote the standard list

operations of reading the first element of a list and removing the first element of a

list as head and tail , respectively. Given a refiner ψ, the value head(ψ(τ)) is used

to resolve the next choice annotated with type τ .

6.3.2 Operational semantics

Using refiners, we extend the operational semantics of Section 6.2 to account for

nondeterministic choice. A command c is now executed with respect to a refiner
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(Seq-2)

(c0, σ, ψ, t, ω) −→ (c′0, σ
′, ψ′, t′, ω)

(c0; c1, σ, ψ, t, ω) −→ (c′0; c1, σ
′, ψ′, t′, ω)

(Choice)

head(ψ(τ)) = i

(c0 8τ c1, σ, ψ, t, ω) −→ (ci, σ, ψ[τ := tail(ψ(τ))], t, ω)

Figure 6.2: Operational semantics for nondeterministic choice.

ψ, in addition to a state σ, trace t, and joint strategy ω. We thus modify con-

figurations to be 5-tuples (c, σ, ψ, t, ω); terminal configurations now have the form

(skip, σ, ψ, t, ω).

All of the operational rules from Figure 6.1 are adapted in the obvious way

to handle the new configurations. The only interesting change is Seq-2, which

is restated in Figure 6.2. Nondeterministic choice is evaluated by the new rule

Choice, which uses refiner ψ to resolve the choice and specifies how the refiner

changes as a result. Refiner ψ[τ := tail(ψ(τ))] is the refiner ψ with the refinement

list for τ replaced by tail(ψ(τ)).

Note that a refiner factors out all nondeterminism in the program: once a re-

finer, state, and joint strategy have been fixed, execution is completely determined.

6.3.3 A security condition for nondeterministic programs

A well-known problem arises with nondeterministic programs: they are vulnerable

to refinement attacks, in which a seemingly secure program can be refined to an

insecure program. For example, whether the input from H is kept secret in the

following program depends on how the nondeterministic choice is resolved:

P3 : input x from H;

output 0 to L 8 output 1 to L
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If the choice is made independently of the current state of the program, say by

tossing a coin, the program is secure. But if the choice is made as a function of x,

the program may leak information about the high input.

To ensure that a program is resistant to refinement attacks, we insist that,

for all possible resolutions of nondeterminism, the program does not leak any

confidential information. Our model allows this quantification to be expressed

cleanly, since refiners encapsulate the resolution of nondeterministic choice. We

adapt the security condition of Section 6.2.2 to ensure that, for any refinement of

the program, users with access only to channel L do not learn anything about the

strategies employed by users of channel H.

Definition 29 (Noninterference Under Refinement) A command c satisfies

noninterference under refinement if for all configurations m = (c, σ, ψ, 〈〉, ω) and

m′ = (c, σ, ψ, 〈〉, ω′) such that ω(L) = ω′(L) and for all traces t such that m  t,

there exists a t′ such that t�L = t′ �L and m′  t′.

Some implications of this definition are discussed below.

Low-observable nondeterminism. This security condition rules out refinement

attacks but allows programs that appear nondeterministic to a low user. For exam-

ple, Program P3 (with 8 replaced by 8L) satisfies noninterference under refinement,

yet repeated executions may reveal different program behavior to the low user.

Initial refinement lists. The security condition does not require the secrecy of

the initial refinement list for H. More concretely, the program

output 0 to L 8H output 1 to L

is considered secure even though it reveals information about the first value of

ψ(H). The definition thus reflects our intuition that high users interact with the
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system only via input and output events on the high channel, which gives them no

control over refinement lists. The definition of noninterference under refinement

could be adapted to systems where high users may exert control over refinement

lists.

Expressivity of refiners. Our model can represent only those refinements that

appear as if they were made before the program began execution. Refinements

that may depend upon dynamic factors, such as the values of variables or the

current program counter, cannot be represented. Our model therefore captures

compiler-time nondeterminism but not runtime nondeterminism [45]. We leave

development of more sophisticated refiners as future work.

6.4 Probabilistic programs

Probabilistic choice can be seen as refinement of arbitrary nondeterministic choice.

Now that we have shown how refiners can be used to factor out the nondeterministic

choices to which we are unable or unwilling to assign probabilities, we can model

probabilistic choice explicitly.

We begin by extending the nondeterministic language of Section 6.3 with prob-

abilistic choice:

c ::= . . . | c0 p8 c1

Informally, probabilistic choice c0 p8 c1 executes command c0 with probability p

and command c1 with probability 1 − p. The probability annotation p must be a

real number such that 0 ≤ p ≤ 1. We assume that probabilistic choices are made

independently of one another.
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(Prob-1)

(c0 p8 c1, σ, ψ, t, ω)
p

−→ (c0, σ, ψ, t, ω)

(Prob-2)

(c0 p8 c1, σ, ψ, t, ω)
1−p
−→ (c1, σ, ψ, t, ω)

Figure 6.3: Operational semantics for probabilistic choice.

6.4.1 Operational semantics

To incorporate probability in the operational semantics we extend the small-step

relation −→ of previous sections to include a label for probability. We denote

membership in the new relation by

m
p

−→ m′,

meaning that configuration m steps with probability p to configuration m′. Con-

figurations remain unchanged from the nondeterministic language of Section 6.3.

The new operational rules defining this relation are given in Figure 6.3. To facil-

itate backwards-compatibility with the operational rules of previous sections, we

interpret m −→ m′ as shorthand for m
1

−→ m′. The operational rules previously

given in Figures 6.1 and 6.2 thus remain unchanged.

6.4.2 A probabilistic security condition

It is well-known that probabilistic programs may be secure with respect to nonprob-

abilistic definitions of noninterference but leak confidential information with high
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probability. As an example, consider the following program:

P4 : input x from H;

if xmod 2 = 0 then

output 0 to L 0.998 output 1 to L

else

output 0 to L 0.018 output 1 to L

If we regard probabilistic choice p8 as identical to nondeterministic choice 8L, then

this program satisfies noninterference under refinement. Yet with high probability,

the program leaks the parity of the high input to channel L.

Toward preventing such probabilistic information flows, observe that if a low

trace t is likely to be emitted with one high user strategy and unlikely with an-

other, then the low user learns something about the high strategy by observing the

occurrence of t. We thus conclude that our security condition should require that

the probability with which low traces are emitted be independent of the strategy

employed on the high channel, that is, that low-equivalent configurations should

produce particular low traces with the same probability. This intuition is con-

sistent with security conditions given by Gray and Syverson [32] and with the

definition of “no evidence” given in Chapter 3.

More formally, let Em(t) represent the event that configuration m emits low

trace t. Suppose that we had a probability µm on such events. Then our security

condition should require, for all configurations m and m′ that are equivalent except

for the choice of high strategy, and all low traces t, that µm(Em(t)) = µm′(Em′(t)).

The remainder of this section is devoted to defining µm and Em(t).

We begin with two additional intuitions. First, since probabilistic choices are

made independently, the probability of an execution sequence

m0
p0
−→ m1

p1
−→ . . .

pn−1
−→ mn
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is equal to the product of the probabilities pi of the individual steps. Second,

a configuration m could emit the same trace t along multiple sequences, so the

probability that m emits t should be the sum of the probabilities associated with

those sequences.

Based on these intuitions, we now construct probability measure µm by adapt-

ing a standard approach for reasoning about probabilities on trees [36]. For any

configuration m, relation
p

−→ gives rise to a rooted directed probability tree whose

vertices are labeled with configurations, edges are labeled with probabilities, and

root is m. Denote the probability tree for m by Tm and the set of vertices of Tm

by Vm. A path in the tree is a sequence of vertices, starting with the root, where

each successive pair of vertices is an edge. Given a vertex v, let tr(v) be the trace

of events in the configuration with which v is labeled. We say that t appears at

v when tr(v) = t but tr(v′) 6= t for all ancestors v′ of v. Let ap(t) be the set of

vertices where t appears. In accordance with the intuitions described above, let

π(v) be the product of the probabilities on the path to v.

A ray is an infinite path or a finite path whose terminal node has no descen-

dants, Rays therefore represent maximal execution sequences. Let Rm denote the

set of rays of Tm. Let Rm(v) be the set of rays that go through vertex v:

Rm(v) , {ρ ∈ Rm | v is on ρ}.

Let Am be the σ-algebra on Rm generated by sets of rays going through par-

ticular vertices, that is, by the set {Rm(v) | v ∈ Vm}.The following result yields a

probability measure on sets of rays. It is a consequence of elementary results in

probability theory, and we omit the proof.

Theorem 9 For any configuration m, there exists a unique probability measure
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µm on Am such that for all v ∈ Vm we have µm(Rm(v)) = π(v).

Now that we have constructed µm, we must show how to use it to obtain the

probability of a set of traces in terms of the probability of a corresponding set of

rays. For a set T of traces, let Rm(T ) be the set of rays on which a trace in T

appears. Let emm(T ) = {t ∈ T |m  t} be the set of traces in T emitted by m,

and note that

Rm(T ) ,
⋃

t∈emm(T )

⋃

v∈ap(t)

Rm(v),

because a trace appears on a ray r if and only if it appears at a vertex v on r.

The set Rm(T ) is measurable with respect to Am because both emm(T ) and Vm

are countable sets. Given a trace t, the set {Rm(v) | v ∈ ap(t)} is a partition of

the set of rays on which t appears. It follows that

µm(Rm({t})) = µm(
⋃
v∈ap(t)Rm(v))

=
∑

v∈ap(t) µm(Rm(v))

=
∑

v∈ap(t) π(v),

that is, that the probability that m emits t is equal to the sum of the values π(v)

for vertices v where t appears, as desired.

We can now define Em(t). Given a security type τ and a trace t, let [t]τ be the

equivalence class of traces that are equal to t when restricted to τ :

[t]τ , {t′ ∈ Tr | t′ �τ = t�τ}.

Finally, let Em(t) be the set of rays on which there is some vertex v such that

tr(v)�L = t�L:

Em(t) , Rm([t]L).

The set Em(t) is in Am. By Theorem 9, µm(Em(t)) is equal to the sum of values
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π(v) for vertices v such that tr(v)�L = t�L and tr(v′)�L 6= t�L for any ancestor

v′ of v.

We are now ready to formalize our security condition.

Definition 30 (Probabilistic Noninterference) A command c satisfies proba-

bilistic noninterference if for all m = (c, σ, ψ, 〈〉, ω) and m′ = (c, σ, ψ, 〈〉, ω′) such

that ω(L) = ω′(L) and for all t ∈ Tr(Ev(L)), we have µm(Em(t)) = µm′(Em′(t)).

Returning to Program P4 at the start of this section, it is easy to check that the

probability of the low trace 〈out(L, 0)〉 is 0.99 when the high strategy is to input an

even number, and 0.01 when the high strategy is to input an odd number. Clearly,

the program does not satisfy probabilistic noninterference.

Program P1, the insecure one-time pad implementation, does not satisfy prob-

abilistic noninterference. However, if the output to H is removed, the resulting

program

while (true) do

x := 0 0.58 x := 1;

input y from H;

output x xor (y mod 2) to L

does satisfy noninterference. The probability of low outputs is independent of the

high strategy, which can no longer exploit knowledge of the value of the one-time

pad x.

User strategies as defined thus far are deterministic. However, our approach

to reasoning about probability applies to randomized user strategies as well as to

randomized programs, so it would be straightforward to adapt our model to handle

randomized strategies.
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6.5 Characterizing noninterference as secrecy

It is straightforward to interpret our definitions of noninterference as instances of

the more general definitions of secrecy presented in Chapter 3. As in Chapter 5,

we must demonstrate how a system—in this case, a program—gives rise to a set

of runs. We reason about two agents L and H who interact with the channels

of the same names, and for simplicity we assume that a state σ and a refiner ψ

are fixed. (If they were not fixed, we could, without loss of generality, model the

states of agents to include information about the initial state and the refiner ψ. In

particular, by including the initial state and the refiner in L’s local state, we can

ensure that H maintains secrecy with respect to L even if L knows both the initial

values of variables and how the nondeterministic choices in the program will be

resolved.) We also assume that an agent’s local state encodes the strategy that

she is using. This is technically necessary, because the goal is to ensure that low

agents obtain no information about which strategy a high agent is using, but it

also seems reasonable to assume that agents know how they will behave.

Our goal is to exhibit a set of runs that characterizes the possible execution

sequences of the system. Given a particular joint strategy ω, we can derive a

natural set of runs from the corresponding rays of the probability tree for the

configuration (c, σ, ψ, t, ω); a system can then be characterized by the sets of runs

that arise from the possible joint strategies.

We associate a run rρ with a ray ρ as follows. If ρ is infinite, let rρ be a run

that, for each time step n, maps to a global state 〈(t �L, ωL), (t �H,ωH)〉, where t

is the trace appearing at the depth-n vertex of ρ and ωL, ωH are user strategies.1

1We apologize for the inevitable overloading of the symbol m, which denotes
time steps in previous chapters and configurations in this chapter. In this section
we use n for time steps and m for configurations.
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(The first element of the pair is the local state of the low agent, and the second

element is the local state of the high agent.) More formally, let t(ρ, n) be the trace t

such that the depth-n vertex of ρ is labeled with configuration (c, σ, ψ, t, ω). Given

an infinite ray ρ from the probability tree T(c,σ,ψ,t,ω), let rρ be the run such that

rρ(n) = 〈(t(ρ, n)�L, ω(L)), (t(ρ, n)�H,ω(H))〉. Given a finite ray ρ whose terminal

vertex is of depth N , let rρ be the run such that

rρ(n) = 〈(t(ρ, n)�L, ω(L)), (t(ρ, n)�H,ω(H))〉

for all n ≤ N , and

rρ(n) = 〈(t(ρ,N)�L, ω(L)), (t(ρ,N)�H,ω(H))〉

for all n ≥ N .

A joint strategy ω thus gives us a set of runs Dω, a corresponding σ-algebra Fω,

and a probability measure µω. (Since there is a one-to-one correspondence between

rays and runs, Fω contains exactly those sets of runs derived from sets of rays in

A(c,σ,ψ,t,ω).) Let D , {Dω |ω ∈ Strat}, and let ∆ , {(Dω,Fω, µω, ) |Dω ∈ D},

in accordance with the definition of an adversarial probability system given in

Section 3.2.4. Finally, let R , ∪D∈DD.

This setup is sufficient to establish a connection between probabilistic nonin-

terference and “no evidence” (in the sense of Definition 13):

Theorem 10 Command c satisfies probabilistic noninterference if and only if, for

all initial states σ and refiners ψ, the low agent L obtains no evidence for the initial

choice in the adversarial probability system (R,D,∆) derived from c, σ, and ψ.

Proof: Given a point (r, n), let tL(r, n) be the event trace appearing in the local

state rL(n) of the low user. We begin by noting that for every joint strategy ω
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and every point (r, n) such that R(KL(r, n))∩Dω 6= ∅, we have µω(R(KL(r, n))) =

µm(Em(tL(n))) (where m = (c, σ, ψ, t, ω)). In other words, the probability of a

low-information set is the same as the probability that the associated low trace

will be emitted by the configuration using joint strategy ω. This follows because

we have

R(KL(r, n)) = {rρ | ρ ∈ Em(tL(n)),

by the definitions of R(KL(r, n)) and Em(tL(n)). Now, note that given a point

(r, n) and partitions Dω, Dω′ ∈ D, we have

R(KL(r, n)) ∩Dω 6= ∅

and

R(KL(r, n)) ∩Dω′ 6= ∅

only if ω(L) = ω′(L), because the local state of the low agent includes the low

strategy. The reader can now check that Definitions 13 and 30 coincide. ut

This result may seem tedious and relatively trivial, but by translating pro-

grams to sets of runs we can exploit Theorem 5 to demonstrate that probabilistic

noninterference coincides with run-based secrecy (according to Definition 12). In

particular, for any countable set of joint strategies, probabilistic noninterference

implies that the high agent maintains probabilistic run-based fprot -secrecy with

respect to the low-agent (where fprot extracts the high agent’s strategy) in the cor-

responding generalized run-based probability system. This result can be restated

in terms of the low agent’s beliefs about which strategy the high agent is using: if

the low user starts out with an initial probability distribution on high strategies,

he will be unable to improve the accuracy of that distribution as he interacts with

the system.
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6.6 A sound type system

The problem of characterizing programs that satisfy noninterference is, for many

definitions of noninterference, intractable. For definitions appearing in the previous

sections, there is a straightforward reduction from the halting problem to the

noninterference problem. It follows that no decision procedure for certifying the

information-flow security of programs can be both sound and complete with respect

to our definitions of noninterference. The goal of this section is to demonstrate

that static analysis techniques can be used to soundly identify secure programs.

We use a type system based on that of Volpano, Smith, and Irvine [92]. It

is interesting to note that a type system designed to enforce batch-job noninter-

ference conditions also enforces our interactive conditions, including probabilistic

noninterference, even though the type system is oblivious to the subtleties of prob-

ability, interactivity, and user strategies. We believe that other type systems for

information flow (e.g., [4, 48, 84, 86]) can also be easily adapted for our interactive

model, and thus that advances in precision and expressiveness can be applied to

our work.

The type system consists of a set of axioms and inference rules for deriving

typing judgments of the form Γ ` p : κ, meaning that phrase p has phrase type

κ under variable typing Γ. A phrase is either an expression or a command. A

phrase type is either a security type τ or a command type τ cmd, where τ ∈ L.

A variable typing is a function Γ : Var → L mapping from variables to security

types. Informally, a command c has type τ cmd when τ is a lower-bound on the

effects that c may have, that is, when the types (under Γ) of any variables that c

updates are bounded below by τ , and any input or output that c performs is on

channels whose security type is bounded below by τ .
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(T-Lit)

Γ ` n : τ

(T-Var)

Γ(x) = τ

Γ ` x : τ

(T-Op)

Γ ` e0 : τ Γ ` e1 : τ

Γ ` e0 ⊕ e1 : τ

(T-Assign)

Γ(x) = τ Γ ` e : τ

Γ ` x := e : τ cmd

(T-Skip)

Γ ` skip : τ cmd

(T-If)

Γ ` e : τ Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` if e then c0 else c1 : τ cmd

(T-Seq)

Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0; c1 : τ cmd

(T-While)

Γ ` e : L Γ ` c : τ cmd

Γ ` while e do c : L cmd

(T-Choice)

Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0 8τ c1 : τ cmd

(T-Prob)

Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0 p8 c1 : τ cmd

(T-In)

Γ(x) = τ ′ τ ≤ τ ′

Γ ` input x from τ : τ cmd

(T-Out)

Γ ` e : τ

Γ ` output e to τ : τ cmd

(T-Subtype)

Γ ` p : κ0 κ0 ≤ κ1

Γ ` p : κ1

(ST-Base)

L ≤ H

(ST-Refl)

κ ≤ κ

(ST-Cmd)

τ0 ≤ τ1

τ1 cmd ≤ τ0 cmd

Figure 6.4: Typing rules.
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Axioms and inference rules for the type system are given in Figure 6.4. There

are two types of rules: typing rules (prefixed with “T”) and subtyping rules (pre-

fixed with “ST”). Typing rules can be used to infer the type of an expression or

command directly. Subtyping rules allow a low-typed expression to be treated as

a high-typed expression and a high-typed command to be treated as a low-typed

command. (It is safe, for example, to store a low-typed expression in a high vari-

able, or to output data to a high user in the body of a loop with a low-typed

guard.)

Most of the rules in this type system are standard. Rules T-In and T-Out

are both similar to T-Assign: T-In ensures that values read from the τ channel

are stored in variables whose type is bounded below by τ , whereas T-Out ensures

that only τ -typed expressions are output on the τ channel. Rules T-Choice

and T-Prob are similar to T-Seq, except that T-Choice also checks that the

typing is consistent with the syntactic type annotation. Rule T-While forbids

high-guarded loops, ensuring that loop termination does not depend on the high

user’s strategy. This prohibits insecure programs such as P2 (in Section 6.2.2).

We believe this rule could be relaxed using techniques described by Boudol and

Castellani [4] and Smith [86].

The following theorem states that this type system soundly enforces noninter-

ference. Recall that our security conditions do not depend on the security types of

variables. Noninterference is enforced provided there exists some variable typing

under which the program is well-typed.2 The proof is in Appendix C.

Theorem 11 For any command c, if there exists a variable typing Γ and a security

2Because the security types of variables can be inferred, programmers need not
specify them. In a (trivially secure) program with no high inputs, for example, all
variables can be assigned type L.
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type τ such that Γ ` c : τ cmd, then

(a) if c does not contain nondeterministic or probabilistic choice, then c satisfies

noninterference;

(b) if c does not contain probabilistic choice, then c satisfies noninterference

under refinement; and

(c) c satisfies probabilistic noninterference.

6.7 Related work

Definitions of information-flow security for imperative programs began with the

work of Denning and Denning [13]. Many subsequent papers define information-

flow security for various sequential imperative languages, but nearly all of these

papers assume a batch-job model of computation. Therefore, they attempt to

ensure the secrecy of high-typed program variables rather than of the behavior of

high users who interact with the system. See Sabelfeld and Myers [76] for a survey

of language-based information-flow security.

Another line of work considers end-to-end information-flow restrictions for non-

deterministic systems that provide input and output functionality for users. Def-

initions of noninterference exist both for abstract systems (such as finite state

machines) that include input and output operations (Goguen and Meseguer [31],

McCullough [56], McLean [58], Mantel [54]), and for systems described using pro-

cess algebras such as CCS, the π-calculus, and related formalisms (Focardi and

Gorrieri [22], Ryan and Schneider [73], Zdancewic and Myers [96]).

Definitions of noninterference based on process algebras typically require that

the observations made by a public user are the same regardless of which high

processes (if any) are interacting with the system. These definitions are thus
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similar in spirit to our definitions of noninterference. Indeed, there is a close

connection between strategies and processes: both can be viewed as description

of how an agent will behave in an interactive setting. A formal comparison with

process-based definitions (such as [24]) may uncover further connections between

process-based system models and imperative programs.

Wittbold and Johnson [93] give the first strategy-based definition of information-

flow security, and Gray and Syverson [32] give a strategy-based definition of prob-

abilistic noninterference. Our definitions of noninterference are the first strategy-

based security conditions for an imperative programming language of which we are

aware. Our work can thus be viewed as a unification of two distinct strands of

the information-flow literature. In this sense our work is similar to that of Man-

tel and Sabelfeld [55], who demonstrate a connection between security predicates

taken from the MAKS framework of Mantel [54] and bisimulation-based definitions

of security for a concurrent imperative language due to Sabelfeld and Sands [77].

However, Mantel and Sabelfeld do not consider interactive programs.

Our probabilistic noninterference condition can be interpreted as precluding

programs that allow low users to make observations that improve the accuracy of

their beliefs about high behavior, that is, their beliefs about which high strategy is

used. As we discuss in Section 6.5, probabilistic noninterference suffices to ensure

that low users cannot improve the accuracy of their subjective beliefs about high

behavior by interacting with a program. Our probabilistic security condition also

ensures that the quantity of information flow due to a secure program is exactly zero

bits in the belief-based quantitative information-flow model of Clarkson, Myers,

and Schneider [10].

The bisimulation-based security condition of Sabelfeld and Sands [77] can be
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viewed as a relaxation of the batch-job model. However, as Mantel and Sabelfeld [55]

point out, bisimulation-based definitions are difficult to relate to trace-based con-

ditions when a nondeterministic choice operator is present in the language. The

following program, for example, satisfies both noninterference under refinement

and probabilistic noninterference (for suitable interpretations of the 8 operator),

but it is not secure with respect to a bisimulation-based definition of security:

input x from H;

if (x = 0)

output 0 to L;

{output 1 to L 8 output 2 to L}

else

{output 0 to L; output 1 to L} 8

{output 0 to L; output 2 to L}

Bisimulation-based security conditions implicitly assume that users can observe

internal choices made by a program. When users observe only inputs and outputs

on channels, our observational model is more appropriate.

Interactivity between users and a program is similar to message-passing be-

tween threads. Sabelfeld and Mantel [75] present a multi-threaded imperative

language with explicit send, blocking receive, and non-blocking receive operators

for communication between processes. They describe a bisimulation-based secu-

rity condition and a type system to enforce it. However, it is not clear how to

model user behavior in their setting. Users cannot be modeled as processes since

user behavior is unknown, and their security condition applies only if the entire

program is known.

Almeida Matos, Boudol, and Castellani [2] state a bisimulation-based secu-

rity condition for reactive programs, which allow limited communication between

processes, and they give a sound type system to enforce the condition. In their
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language, programs react to the presence and absence of named broadcast sig-

nals and can emit signals to other programs in a “local area.” It is possible to

implement our higher-level channels and events within a local area, using their

lower-level reactivity operators. However, it is unclear how to use reactivity to

model interactions with unknown users who are not part of a local area.

Focardi and Rossi [23] study the security of processes in dynamic contexts

where the environment, including high processes, can change throughout execution.

This is similar to how high user strategies describe changing inputs throughout

execution. However, user strategies depend upon the history of the computation,

whereas dynamic contexts do not, so it is unclear how to encode a user strategy

using dynamic contexts.

Previous work dealing with the susceptibility of possibilistic noninterference to

refinement attacks takes one of two approaches to specifying how nondeterministic

choice is resolved. One approach is to assume that choices are made according to

fixed probability distributions, as we do in Section 6.4. Volpano and Smith [91], for

example, describe a scheduler for a multithreaded language that chooses threads

to execute according to a uniform probability distribution. A second approach is

to insist that programs be observationally deterministic for low users. McLean [57]

and Roscoe [72] both advocate observational determinism as an appropriate secu-

rity condition for nondeterministic systems, and Zdancewic and Myers [96] give a

security condition based on observational determinism for a concurrent language

based on the join calculus [25].

Observational determinism implies noninterference under refinement and thus

immunity to refinement attacks. In settings where the resolution of nondeterminis-

tic choice may depend on confidential information, we conjecture that observational
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determinism and noninterference under refinement are equivalent. However, when

the resolution of some choices is independent of confidential information, obser-

vational determinism is a stronger condition: any program that is observationally

deterministic satisfies noninterference under refinement, but the converse does not

hold.



Chapter 7

Conclusion
We have defined general notions of secrecy for systems with which multiple agents

interact over time, and have given syntactic characterizations of our definitions

that connect them to logics of knowledge and probability. We have applied our

definitions to the problem of characterizing the absence of information flow, and

have shown how our definitions can be viewed as a generalization of a variety of

information-flow definitions that have been proposed in the past. We have also

given general definitions of anonymity for agents acting in multiagent systems,

and have compared and contrasted our definitions to other similar definitions of

anonymity.

Our knowledge-based system framework provides a number of advantages:

• We are able to state confidentiality properties succinctly and intuitively, and

in terms of the knowledge of the observers or attackers who interact with the

system.

• Our system has a well-defined semantics that lets us reason about knowledge

in systems of interest, such as systems specified using process algebras or

strand spaces as well as systems derived from imperative programs.

• We are able to give straightforward probabilistic definitions of secrecy and

anonymity.

As we discuss in Chapter 5, we are not the first to attempt to provide a gen-

eral framework for analyzing secrecy or anonymity. However, we believe that our

definitions are more closely related to the intuitions that people in the field have

140
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had, in part because those intuitions have often often been expressed informally in

terms of the knowledge of the agents who interact with a system.

Although we have discussed secrecy largely with respect to the kinds of input

and output systems that have been popular with the theoretical security commu-

nity, our definitions of secrecy apply in other contexts, such as protocol analysis,

semantics for imperative programming languages, and database theory. Chor, Gol-

dreich, Kushilevitz, and Sudan [8], for example, consider the situation where a user

wants to query a replicated database for some specific database item, but wants a

guarantee that no one will be able to determine, based on his query, which item

he wants. It is not hard to show that the definition of privacy given by Chor et

al. is a special case of secrecy in an adversarial system with a cell corresponding

to each possible item choice.

One possible direction for future work is a careful consideration of how defini-

tions of secrecy can be weakened to make them more useful in practice. Here we

briefly consider some of the issues involved:

• Declassification: Not all facts can be kept secret in a real-world computer

system. The canonical example is password checking, where a system is

forced to release information when it tells an attacker that a password is

invalid. Declassification for information-flow properties has been addressed

by, for example, Myers, Sabelfeld, and Zdancewic [65]. It would be interesting

to compare their approach to our syntactic approach to secrecy, keeping

in mind that our syntactic definitions can be easily weakened simply by

removing facts from the set of facts that an agent is required to think are

possible.

• Computational secrecy: Our definitions of secrecy are most appropriate for



142

attackers with unlimited computational power, since agents “know” any fact

that follows logically from their local state, given the constraints of the sys-

tem. Such an assumption is unreasonable for most cryptographic systems,

where secrecy depends on the inability of attackers to solve difficult compu-

tational problems. The process-algebraic approach advocated by Mitchell,

Ramanathan, Scedrov, and Teague [63] and the work on probabilistic algo-

rithm knowledge of Halpern and Pucella [43] may help to shed light on how

definitions of secrecy can be weakened to account for agents with computa-

tional limitations.

• Quantitative secrecy: Our definitions of probabilistic secrecy require abso-

lute secrecy: no information about the state of high users may be revealed

to low users. One way to weaken these requirements is to place bounds on

the amount of information (measured in, say, bits) that can be revealed to

low users. This intuition can be formalized using the information-theoretic

notions of relative entropy and mutual information, which can be viewed

as generalizations of probabilistic independence. Rather than requiring that

a low agent learns nothing, quantitative definitions of secrecy use entropy-

based metrics to measure (and place bounds on) how much a low agent

learns as he interacts with a system. Information-theoretic approaches to

secrecy have been discussed by Wittbold and Johnson [93], and more re-

cently by Clark, Hunt, and Malacaria [9], Lowe [52], Di Pierro, Hankin, and

Wiklikcy [14], and Clarkson, Myers, and Schneider [10].

• Statistical privacy: In some systems, such as databases that release aggre-

gate statistical information about individuals, our definitions of secrecy are
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much too strong because they rule out the release of any useful information.

Formal definitions of secrecy and privacy for such systems have recently been

proposed by Evfimievski, Gehrke, and Srikant [18] and by Chawla, Dwork,

McSherry, Smith and Wee [6]. These definitions seek to limit the informa-

tion that an attacker can learn about a user whose personal information is

stored in the database. It would be interesting to cast those definitions as

weakenings of secrecy.

These weakenings of secrecy are all conceptually different, but there are obvi-

ously many relations and connections among them. We hope that our work will

help to clarify some of the issues involved.

With respect to anonymity, there are a number of issues that this paper has

not addressed. We have focused almost exclusively on properties of anonymity

and have not considered related notions, such as pseudonymity and unlinkabil-

ity [47, 68]. There seems to be no intrinsic difficulty capturing these notions in

our framework. For example, one form of message unlinkability specifies that no

two messages sent by an anonymous sender can be “linked,” in the sense that an

observer can determine that both messages were sent by the same sender. More

formally, two actions a and a′ are linked with respect to an observer o if o knows

that there exists an agent i who performed both a and a′. This definition can be

directly captured using knowledge. Its negation says that o considers it possible

that there exist two distinct agents who performed a and a′; this can be viewed as a

definition of minimal unlinkability. This minimal requirement can be strengthened,

exactly as our definitions of anonymity were, to include larger numbers of distinct

agents, probability, and so on. Although we have not worked out the details, we

believe that our approach will be similarly applicable to other related definitions.
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Another obviously important issue is verification and enforcement, that is,

checking whether a given system specifies one of the confidentiality properties we

have introduced. The sound type system of Section 6.6 is one example of a static

enforcement mechanism, but is specific to the domain of imperative programs. An-

other technique for enforcement that is more generally applicable to our definitions

is model-checking. Recent work on the problem of model checking in the multia-

gent systems framework suggests that this may be viable. Van der Meyden [59]

discusses algorithms and complexity results for model checking a wide range of

epistemic formulas in the runs and systems framework, and van der Meyden and

Su [60] use these results to verify the dining cryptographers protocol [5], using

formulas much like those described in Section 4.1.3. Even though model checking

of formulas involving knowledge seems to be intractable for large problems, these

results are a promising first step toward being able to use knowledge for both the

specification and verification of secrecy and anonymity. Shmatikov [83], for exam-

ple, analyzes the Crowds system using the probabilistic model checker PRISM [49].

This is a particularly good example of how definitions of anonymity can be made

precise using logic and probability, and how model-checking can generate new in-

sights into the functioning of a deployed protocol.

Our definitions of noninterference for imperative programs constitute a step

toward understanding and enforcing information-flow security in real-world pro-

grams. Many programs interact with users, and the behavior of these users will

often be dependent on previous inputs and outputs. Also, many programs, espe-

cially servers, are intended to run indefinitely rather than to perform some compu-

tation and then halt. Our model of interactivity is thus more suitable for analyzing

real-world systems than the batch-job model. In addition, our imperative language
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approximates the implementation of real-world interactive programs more closely

than abstract system models such as the π-calculus. Our work thereby contributes

to understanding the security properties of programs written in languages with in-

formation flow control, such as Jif [66] or Flow Caml [85], that support user input

and output.

In closing, we want to emphasize that our goal is not to advocate any par-

ticular definitions of secrecy or anonymity as being the “right” definition for all

situations. Rather, we argue that system designers should work with definitions

that are as simple and intuitive as possible. The definitions and results that we

have presented, and their underlying intuitions of knowledge and independence,

do not depend on the particular system representation that we describe here,

so they should be broadly applicable. Indeed, one major theme of our work is

the importance of having good system models and of isolating general notions

of confidentiality from particular system representations. Given the right system

model and the right measure of uncertainty, a reasonable definition of secrecy or

anonymity usually follows quite easily. By providing a general, straightforward way

to model systems, the runs-and-systems framework provides a useful foundation

for appropriate definitions of security.



Appendix A

Proofs for Chapter 3

A.1 Examples of systems

In this section, we give examples of simple systems that show the limitations of

various theorems. All the systems involve only two agents, and we ignore the

environment state. We describe each run using the notation

〈(Xi,1, Xj,1), (Xi,2, Xj,2), (Xi,3, Xj,3), . . .〉,

where Xi,k is the local state of agent i at time k. For asynchronous systems, we

assume that the final global state—(Xi,3, Xj,3), in the example above—is repeated

infinitely. For synchronous systems we need different states at each time step, so

we assume that global states not explicitly listed encode the time in some way, so

change at each time step. For notational simplicity, we use the same symbol for a

local state and its corresponding information set.

Example 1: Suppose that the synchronous system R consists of the following

two runs:

r1 , 〈(X,A), (Y1, B1), (Y2, B2), . . .〉

r2 , 〈(Z,A), (Y1, C1), (Y2, C2), . . .〉

Note that agent 2 has perfect recall in R, but agent 1 does not (since at time 0

agent 1 knows the run, but at all later times, he does not). It is easy to check

that agent 2 maintains synchronous secrecy with respect to 1, but not run-based

secrecy, since R(B1) ∩R(Z) = ∅.
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For the same reasons, if we take the probability measure µ on R with µ(r1) =

µ(r2) = 1/2, probabilistic synchronous secrecy and run-based probabilistic secrecy

do not coincide. This shows that the perfect recall requirement is necessary in

both Propositions 3 and 8. ut

Example 2: Suppose that the R consists of the following three runs (where, in

each case, the last state repeats infinitely often):

r1 , 〈(X,A) . . .〉

r2 , 〈(X,B), (Y,A) . . .〉

r3 , 〈(Y,A) . . .〉,

It is easy to see that agent 2 maintains run-based secrecy with respect to agent 1

in R, but not total secrecy or synchronous secrecy (since, for example, Y ∩B = ∅).

Now consider a probability measure µ on R such µ(r1) = µ(r3) = 2/5, and

µ(r2) = 1/5. Then µ(R(A) |R(X)) = µ(R(A) |R(Y )) = 1 and µ(R(B) |R(X)) =

µ(R(B) |R(Y )) = 1/3, so agent 2 maintains run-based probabilistic secrecy with

respect to 1 in R. 1 does not maintain probabilistic secrecy with respect to 2

in (R, µ), since µ(R(X) |R(A)) = 3/5, while µ(R(X) |R(B)) = 1. Thus, if the

agents do not have perfect recall and the system is not synchronous, then run-

based probabilistic secrecy is not necessarily symmetric. ut

Example 3: Suppose that the synchronous system R consists of the following

four runs:

r1 , 〈(X,A), (Y1, C1), (Y2, C2), . . .〉

r2 , 〈(X,B), (Y1, D1), (Y2, D2), . . .〉

r3 , 〈(Q,A), (R1, D1), (R2, D2), . . .〉

r4 , 〈(Q,B), (R1, C2), (R2, C2), . . .〉
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Note that agent 2 does not have perfect recall in R, although agent 1 does. Let µ

give each of these runs equal probability. It is easy to check that for all i ≥ 1, we

have

• µ(R(A) |R(X)) = µ(R(A) |R(Q)) = 1/2,

• µ(R(B) |R(X)) = µ(R(B) |R(Q)) = 1/2,

• µ(R(Ci) |R(X)) = µ(R(Ci) |R(Q)) = 1/2, and

• µ(R(Di) |R(X)) = µ(R(Di) |R(Q)) = 1/2.

Because R(X) = R(Yi) and R(Q) = R(Ri) for all i ≥ 1, it follows that agent 2

maintains run-based probabilistic secrecy with respect to 1 in (R, µ).

Now, let p be a primitive proposition and let π be an interpretation such that

p is true if 2’s local state is either A or D1. Thus, p is 2-local in I = (R, µ, π).

Since µ(R(A)∪R(D1) |R(X)) = 1 while µ(R(A)∪R(D1) |R(Q)) = 1/2, there is

no constant σ such that I |= Pr1(♦p) = σ. This shows that the assumption that

agent j has perfect recall is necessary in Theorem 4. ut

A.2 Proofs for Section 3.1

Proposition 2: If R is a system where i and j have perfect recall, C depends only

on timing, and j maintains C-secrecy with respect to i, then j maintains run-based

secrecy with respect to i.

Proof: Given (r,m) and (r′,m′), we must find a run r′′ and times m1 and m2 such

that r′′i (m1) = ri(m) and r′′j (m2) = r′j(m
′). Because C depends only on timing,

there exists a point (r, n) such that (r′,m′) ∈ C(r, n). The proof now splits into

two cases:
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• Suppose that n ≥ m. By C-secrecy, there exists a point (r′′,m2) such that

r′′i (m2) = ri(n) and r′′j (m2) = r′j(m
′). Because i has perfect recall, there

exists some m1 ≤ m2 such that r′′i (m1) = ri(m).

• Suppose thatm > n. Because C depends only on timing, there exists n′ ≥ m′

such that (r′, n′) ∈ C(r,m). By C-secrecy, there exists a point (r′′,m2) such

that r′′i (m2) = ri(m) and r′′j (m2) = r′j(n
′). Because j has perfect recall, there

exists some m1 ≤ m2 such that r′′j (m1) = r′j(m
′).

ut

Proposition 3: If R is a synchronous system where both i and j have perfect

recall, then agent j maintains synchronous secrecy with respect to i iff j maintains

run-based secrecy with respect to i.

Proof: Suppose that agent j maintains synchronous secrecy with respect to j in

R. Because both i and j have perfect recall, j maintains run-based secrecy with

respect to i by Proposition 2.

Conversely, suppose that j maintains run-based secrecy with respect to i. Given

runs r, r′ ∈ R and any time m, there exists a run r′′, and times n and n′, such

that r′′i (n) = ri(m) and r′′j (n
′) = r′j(m). By synchrony, m = n = n′, and we have

r′′i (m) = ri(m) and r′′j (m) = r′j(m). Thus j maintains synchronous secrecy with

respect to i. ut

Proposition 4: A formula φ is j-local in an interpreted system I = (R, π)

iff there exists a set Ω of j-information sets such that (I, r,m) |= φ whenever

(r,m) ∈
⋃

K∈Ω K.

Proof: Suppose that φ is j-local. Let

Ω = {Kj(r,m) | (I, r,m) |= φ}.
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If (I, r,m) |= φ, then Kj(r,m) ∈ Ω by definition, so (r,m) ∈
⋃

K∈Ω K. Likewise, if

(r,m) ∈
⋃

K∈Ω K, then (r,m) ∈ Kj(r
′,m′) for some (r′,m′) such that (I, r′,m′) |=

φ. By j-locality, (I, r,m) |= φ.

Conversely suppose that there exists a set of j-information sets Ω such that

(I, r,m) |= φ whenever (r,m) ∈
⋃

K∈Ω K. We need to show that φ is j-local.

Suppose that rj(m) = r′j(m
′). If (I, r,m) |= φ, then (r,m) ∈ Kj(r

′′,m′′) for some

Kj(r
′′,m′′) ∈ Ω, and clearly (r′,m′) ∈ Kj(r

′′,m′′) ⊆
⋃

K∈Ω K too, so (I, r′,m′) |= φ

by assumption. ut

Theorem 1: Suppose that C is an i-allowability function. Agent j maintains

C-secrecy with respect to agent i in system R iff, for every interpretation π and

point (r,m), if φ is j-local and (I, r′,m′) |= φ for some (r′,m′) ∈ C(r,m), then

(I, r,m) |= Piφ.

Proof: Suppose that j maintains C-secrecy with respect to i in R. Let π be an

interpretation, let (r,m) be a point, and let φ be a formula that is j-local such

that (I, r′,m′) |= φ for some (r′,m′) ∈ C(r,m). By C-secrecy, there exists a

point (r′′,m′′) ∈ Ki(r,m) ∩ Kj(r
′,m′). Because φ is j-local, (I, r′′,m′′) |= φ. Thus

(I, r,m) |= Piφ, as required.

For the converse, given (r,m) ∈ PT (R) and (r′,m′) ∈ C(r,m), let π be an

interpretation such that π(r′′,m′′)(p) = true iff (r′′,m′′) ∈ Kj(r
′,m′). Let I =

(R, π). Clearly, p is j-local. By assumption, (I, r,m) |= Pip. Thus, there exists

some point (r′′,m′′) ∈ Ki(r,m) such that (I, r′′,m′′) |= p. By definition, (r′′,m′′) ∈

Kj(r
′,m′). Because (r′′,m′′) ∈ Ki(r,m) ∩ Kj(r

′,m′), j maintains C-secrecy with

respect to i in R. ut

Theorem 2: Agent j maintains run-based secrecy with respect to agent i in system
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R iff, for every interpretation π, if φ is j-local and satisfiable in I = (R, π), then

I |= Pi♦φ.

Proof: Suppose that j maintains run-based secrecy with respect to i. Let π

be an interpretation and let φ be a j-local formula formula that is satisfiable in

I = (R, π). Choose a point (r,m). Because φ is satisfiable, there exists a point

(r′,m′) such that (I, r′,m′) |= φ. Because j maintains run-based secrecy with

respect to i, there exist a run r′′ and times n and n′ such that r′′i (n) = ri(m) and

r′′j (n
′) = r′j(m

′). By j-locality, (I, r′′, n′) |= φ. It follows that (I, r′′, n) |= ♦φ, and

that (I, r,m) |= Pi♦φ, as desired.

For the converse, given points (r,m) and (r′,m′), let π be an interpretation

such that π(r′′,m′′)(p) = true iff (r′′,m′′) ∈ Kj(r
′,m′). We must show that

R(Ki(r,m))∩R(Kj(r
′,m′)) 6= ∅. Clearly p is j-local and satisfiable, so (I, r,m) |=

Pi♦p. Thus, there exists a point (r′′, n) ∈ Ki(r,m) such that (I, r′′, n) |= ♦p.

By definition of p, there exists n′ such that (r′′, n′) ∈ Kj(r
′,m′). It follows that

r′′ ∈ R(Ki(r,m)) ∩R(Kj(r
′,m′)). ut

A.3 Proofs for Section 3.2

Proposition 5: If (R,PR) is a probability system such that µr,m,i({(r,m)}) > 0

for all points (r,m) and j maintains probabilistic total secrecy with respect to i in

(R,PR), then j also maintains total secrecy with respect to i in R.

Proof: Suppose that j maintains probabilistic total secrecy with respect to i

in (R,PR), and (r,m) and (r′,m′) are arbitrary points. Then (taking (r′′,m′′) =

(r′,m′) in the definition) we have µr,m,i(Kj(r
′,m′)∩Ki(r,m)) = µr′,m′,i(Kj(r

′,m′)∩

Ki(r
′,m′)). But (r′,m′) ∈ Kj(r

′,m′)∩Ki(r
′,m′), so µr′,m′,i(Kj(r

′,m′)∩Ki(r
′,m′)) ≥
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µr′,m′,i({(r
′,m′)}) > 0, by assumption. Thus, µr,m,i(Kj(r

′,m′)∩Ki(r,m)) > 0, from

which it follows that Kj(r
′,m′) ∩ Ki(r,m) 6= ∅. ut

The following result is proved by Gill, van der Laan, and Robins [28]; see also

Grünwald and Halpern [33, Theorem 3.1]. (A more general version is stated and

proved as Proposition 3.)

Lemma 1 Suppose that µ is a probability on W , X,Y ⊆ W , Y1, Y2, . . . is a count-

able partition of Y ⊆ W , and X,Y1, Y2, . . . are all measurable. The following are

equivalent:

(a) µ(X |Yi) = µ(X |Yj) for all Yi, Yj such that µ(Yi) > 0 and µ(Yj) > 0.

(b) µ(X |Yi) = µ(X |Y ) for all Yi such that µ(Yi) > 0, so that Yi is conditionally

independent of X given Y .

Proposition 6: If (R,PR) is a probability system (resp., synchronous probability

system) that satisfies the common prior assumption with prior probability µcp, the

following are equivalent:

(a) Agent j maintains probabilistic total (resp., synchronous) secrecy with respect

to i.

(b) Agent i maintains probabilistic total (resp., synchronous) secrecy with respect

to j.

(c) For all points (r,m) and (r′,m′),

µcp(Kj(r
′,m′) | Ki(r,m)) = µcp(Kj(r

′,m′))

(resp., for all points (r,m) and (r′,m),

µcp(Kj(r
′,m) | Ki(r,m)) = µcp(Kj(r

′,m) | PT (m)),
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where PT (m) is the set of points occurring at time m; that is, the events

Ki(r,m) and Kj(r
′,m) are conditionally independent with respect to µcp,

given that the time is m).

Proof: We prove the synchronous case here. The proof for total secrecy is almost

identical and left to the reader. Recall that j maintains probabilistic synchronous

secrecy with respect to i if, for all times m and all runs r, r′, r′′,

µr,m,i(Kj(r
′′,m) ∩ Ki(r,m)) = µr′,m,i(Kj(r

′′,m) ∩ Ki(r
′,m)).

Because (R,PR) satisfies the common prior assumption with prior probability

µcp , this requirement can be restated as

µcp(Kj(r
′′,m) | Ki(r,m)) = µcp(Kj(r

′′,m) | Ki(r
′,m)).

By Lemma 1, taking Y = PT (m) and the Yi’s to be the i-information sets at

time m, it follows that j maintains probabilistic synchronous secrecy with respect

to i iff Kj(r
′′,m) is conditionally independent of Ki(r,m) conditional on PT (m)

for all runs r and r′′. By the symmetry of conditional independence, it immedi-

ately follows that this is true iff i maintains probabilistic synchronous secrecy with

respect to j. ut

Lemma 2 If R is a system where agent i has perfect recall and Ω is an arbitrary

set of i-information sets, then there exists a set Ω′ ⊆ Ω such that {R(K) | K ∈ Ω′}

is a partition of
⋃

K∈Ω R(K).

Proof: Define a set K ∈ Ω to be dominated by a set K′ ∈ Ω if K 6= K′ and there

exists a run r and times m′〈m such that (r,m) ∈ K and (r,m′) ∈ K′. Let Ω′ consist

of the information sets in Ω that are not dominated by another set in Ω. Note
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that if r ∈ ∪K∈ΩR(K), then r ∈ R(K′) for some K′ ∈ Ω′. To see this, consider

the set Ω(K) consisting of K and all information sets in Ω that dominate K. By

perfect recall, i’s local state sequence at each information set in Ω(K) is a (not

necessarily strict) prefix of i’s local state sequence in K. Let K′ be the information

set in Ω(K) where i’s local state sequence is shortest. It follows that K′ is not

dominated by another information set in Ω(K). Furthermore, if there exists an

information set K′′ ∈ Ω−Ω(K) that dominates K′, then K′′ would dominate K as

well, contradicting the construction of Ω(K). Therefore, K′ ∈ Ω′ and r ∈ K′. Thus

⋃
K∈Ω′ R(K) =

⋃
K∈Ω R(K). Moreover, if K and K′ are different sets in Ω′, then

R(K) and R(K′) must be disjoint, for otherwise one of K or K′ would dominate

the other. ut

Proposition 7: If (R,F , µ) is a run-based probability system that is either

synchronous or one where agents i and j both have perfect recall, then the following

are equivalent:

(a) Agent j maintains run-based probabilistic secrecy with respect to i.

(b) Agent i maintains run-based probabilistic secrecy with respect to j.

(c) For all points (r,m) and (r′,m′), R(Ki(r,m)) and R(Kj(r
′,m′)) are proba-

bilistically independent with respect to µ.

Proof: First, note that if R is synchronous or if i has perfect recall, then there

exists a collection Ω of i-information sets such that the set {R(K) | K ∈ Ω} is a

partition of R. In the case of perfect recall, this follows by Lemma 2 applied to

the set of all information sets (whose union is clearly R). With synchrony we can

take Ω to consist of sets of the form R(Ki(r,m)), for some fixed time m.
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Now, suppose j maintains run-based probabilistic secrecy with respect to i. By

definition,

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r

′′,m′′)) |R(Ki(r
′,m′)))

for all points (r,m), (r′,m′), and (r′′,m′′). In particular, for all K,K′ ∈ Ω, and all

points (r′,m′), µ(R(Kj(r
′,m′) |R(K))) = µ(R(Kj(r

′,m′)) |R(K′)). By Lemma 1

it follows that µ(R(Kj(r
′,m′′)) |R(K)) = µ(R(Kj(r

′,m′′))) for all information sets

K ∈ Ω. But then it follows by secrecy that µ(R(Kj(r
′,m′)) |R(Ki(r,m))) =

µ(R(Kj(r
′,m′)) for all i-information sets R(Ki(r,m)). Therefore R(Kj(r

′,m′))

and R(Ki(r,m)) are independent for all information sets Kj(r
′,m′) and Ki(r,m).

Thus secrecy implies independence, and this holds if we reverse the roles of i and

j.

It is also clear that independence implies secrecy. For suppose that (c) holds.

Then, for all points (r,m), (r′,m′), and (r′′,m′′), we have

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r

′′,m′′)))

= µ(R(Kj(r
′′,m′′)) |R(Ki(r

′,m′))),

so that j maintains run-based probabilistic secrecy with respect to i. Similarly, i

maintains secrecy with respect to j. ut

Proposition 8: If (R,PR) is the standard system determined by the synchronous

run-based probability system (R,F , µ) and agents i and j have perfect recall in R,

then agent j maintains run-based probabilistic secrecy with respect to i in (R,F , µ)

iff j maintains probabilistic synchronous secrecy with respect to i in (R,PR).

Proof: Clearly if j maintains run-based probabilistic secrecy with respect to i in

(R, µ) and (R,PR) is the standard system determined by (R, µ) then, at all times
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m,

µr,m,i(Kj(r
′′,m) ∩ Ki(r,m)) = µ(Kj(r

′′,m) | Ki(r,m))

= µ(Kj(r
′′,m) | Ki(r

′,m))

= µr′,m,i(Kj(r
′′,m) ∩ Ki(r

′,m)),

so j maintains probabilistic synchronous secrecy with respect to i in (R,PR).

For the converse, suppose that j maintains probabilistic synchronous secrecy

with respect to i in (R,PR). We want to show that, for all points (r,m), (r′,m′),

and (r′′,m′′),

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r

′′,m′′)) |R(Ki(r
′,m′))). (A.1)

We first show that, for all runs r and r′′ and times m and m′′,

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r

′′,m′′)) |R(Ki(r,m
′′))). (A.2)

Since (A.2) also holds with r replaced by r′, (A.1) easily follows from (A.2) and

the assumption that j maintains probabilistic synchronous secrecy with respect to

i.

To prove (A.2), we consider two cases: m ≤ m′′ and m′′ < m. If m ≤ m′′

then, by synchrony and perfect recall, we can partition the runs in R(Ki(r,m))

according to i’s local state at time m′′. Let Ω = {Ki(r
∗,m′′) | r∗ ∈ R(Ki(r,m))}.

By perfect recall and synchrony, R(Ki(r,m)) is the disjoint union of the sets in Ω.

Thus,

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m)))

=
∑

K∈Ω µ(R(Kj(r
′′,m′′)) ∩R(K) |R(Ki(r,m)))

=
∑

K∈Ω µ(R(Kj(r
′′,m′′)) |R(K)) · µ(R(K) |R(Ki(r,m)))

= µ(R(Kj(r
′′,m′′)) |R(Ki(r,m

′′))) ·
∑

K∈Ω µ(R(K) |R(Ki(r,m)))

= µ(R(Kj(r
′′,m′′)) |R(Ki(r,m

′′))).
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The argument is similar if m′′ < m. We now partition the runs in R(Ki(r,m
′′))

according to i’s local state at time m and the runs in R(Kj(r
′′,m′′)) according to

j’s local state at time m. Define

Ωi = {Ki(r
∗,m) | r∗ ∈ R(Ki(r,m

′′)}.

and

Ωj = {Kj(r
∗,m) | r∗ ∈ R(Kj(r

′′,m′′))}.

We now have

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m

′′)))

=
∑

Kj∈Ωj
µ(R(Kj) |R(Ki(r,m

′′)))

=
∑

Kj∈Ωj

∑
Ki∈Ωi

µ(R(Kj) |R(Ki)) · µ(R(Ki) |R(Ki(r,m
′′)))

=
∑

Kj∈Ωj
µ(R(Kj) |R(Ki)) ·

∑
Ki∈Ωi

µ(R(Ki) |R(Ki(r,m
′′)))

=
∑

Kj∈Ωj
µ(R(Kj) |R(Ki(r,m)))

= µ(R(Kj(r
′′,m′′)) |R(Ki(r,m))),

as needed. ut

Theorem 3:

(a) If (R,PR) is a probabilistic system, then agent j maintains probabilistic total

secrecy with respect to agent i iff, for every interpretation π and formula

φ that is j-local in I = (R,PR, π), there exists a constant σ such that

I |= Pri(φ) = σ.

(b) If (R,PR) is a synchronous probabilistic system, then agent j maintains

probabilistic synchronous secrecy with respect to agent i iff, for every inter-

pretation π, time m, and formula φ that is j-local in I = (R,PR, π), there

exists a constant σm such that (I, r,m) |= Pri(φ) = σm for all runs r ∈ R.
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Proof: We prove part (b) here. The proof of (a) is similar.

Suppose R is synchronous and that j maintains synchronous probabilistic se-

crecy with respect to i. Let π be an interpretation, m be an arbitrary time,

and φ be a j-local formula in I = (R, µ, π). Because φ is j-local, by Propo-

sition 4, there exists a set Ω of j-information sets such that (I, r,m) |= φ iff

(r,m) ∈
⋃

K∈Ω K. Let Ψ =
⋃

K∈Ω K. Let S = {r′ ∈ R | (r′,m) ∈ Ψ}, and let

Ω(m) = {K ∈ Ω | (r′,m) ∈ K for some r′ ∈ R}. Since j maintains synchronous

probabilistic secrecy with respect to i, for every element K ∈ Ω(m), there is a con-

stant σ(K,m) such that, for all runs r ∈ R, µ(R(K) |R(Ki(r,m))) = σ(K,m). Let

σm =
∑

K∈Ω(m) σ(K,m), and fix r ∈ R. By synchrony, the set {R(K) | K ∈ Ω(m)}

partitions S, and

µ(S |R(Ki(r,m))) =
∑

K∈Ω(m)

µ(R(K) |R(Ki(r,m))) = σm.

Because Ψ ∩ Ki(r,m) = Ki(r,m)(S), we have µr,m,i(Ψ) = µ(S |R(Ki(r,m))), and

it follows that (I, r,m) |= Pri(φ) = σm, as desired.

For the converse, suppose that for every interpretation π and time m, if φ is

j-local in I = (R, µ, π), then there exists a constant σm such that (I, r,m) |=

Pri(φ) = σm for all runs r ∈ R. Fix a time m. Suppose that r, r′, r′′ ∈ R and

that π is an interpretation such that π(r∗, n)(p) = true iff (r∗, n) ∈ Kj(r
′′,m).

The proposition p is j-local, so there exists a constant σm such that (I, r,m) |=

Pri(p) = σm and (I, r′,m) |= Pri(p) = σm. It follows that

µr,m,i(Kj(r
′′,m)) = σm = µr′,m,i(Kj(r

′′,m)),

as desired. ut

Theorem 4: If (R,PR) is a standard probability system where agent j has

perfect recall, then agent j maintains run-based probabilistic secrecy with respect
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to agent i iff, for every interpretation π and every formula φ that is j-local in

I = (R,PR, π), there exists a constant σ such that I |= Pri(♦φ) = σ.

Proof: Suppose that j maintains probabilistic secrecy with respect to agent i in

(R, µ). Given an interpretation π and a formula φ that is j-local in I = (R, µ, π),

by Proposition 4 there exists a set Ω of j-information sets such that (I, r,m) |= φ

whenever (r,m) ∈
⋃

K∈Ω K. Let Ψ =
⋃

K∈Ω R(K). Note that (I, r,m) |= ♦φ

iff r ∈ R(
⋃

K∈Ω K) = Ψ. By Lemma 2, there exists a set Ω′ ⊆ Ω such that

{R(K) : K ∈ Ω} is a partition of Ψ. By probabilistic secrecy, for each K ∈ Ω′,

there exists a constant σK such that

µ(R(K) |R(Ki(r,m))) = σK

for all points (r,m). Let σ =
∑

K∈Ω′ σK. Because {R(K) | K ∈ Ω′} is a partition of

Ψ, for all points (r,m),

µ(Ψ |R(Ki(r,m))) =
∑

K∈Ω

µ(R(K) |R(Ki(r,m))) = σ.

Because µr,m,i(Ki(r,m)(Ψ)) = µ(Ψ |R(Ki(r,m))), it follows that I |= Pri(♦φ) = σ.

For the converse, suppose that for every interpretation π and formula φ that

is j-local in I = (R, µ, π), there exists a constant σ such that I |= Pri(♦φ) = σ.

Given points (r,m), (r′,m′), and (r′′,m′′), let π be an interpretation such that

π(r∗, n)(p) = true iff (r∗, n) ∈ Kj(r
′′,m′′). The proposition p is j-local, so I |=

Pri(♦p) = σ. It follows that

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m))) = µr,m,i(Ki(r,m)(R(Kj(r

′′,m′′)))) = σ,

and the same holds if we replace (r,m) with (r′,m′), so

µ(R(Kj(r
′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r

′′,m′′)) |R(Ki(r
′,m′))).



160

This gives us probabilistic secrecy. ut

Theorem 5: Let (R,D,∆) be the adversarial probability system determined by

INIT and suppose that R is either synchronous or a system where i has perfect

recall. Agent i obtains no evidence for the initial choice in (R,D,∆) iff agent

i− maintains generalized run-based probabilistic fi−-secrecy with respect to i in

(R,MINIT
i (∆)).

Proof: For the forward direction, we want to show that i− maintains generalized

run-based probabilistic fi−-secrecy with respect to i in (R,MINIT
i (∆)). Suppose

that µ ∈ MINIT
i (∆). The information function fi− maps an i−-information set to

the choices made by the agents other than i. Let an i−-choice set be a set of runs

of the form ∩j 6=iDyj
. We must show that for arbitrary points (r,m) and (r′,m′)

and i−-choice sets Di− , we have

µ(Di− |R(Ki(r,m))) = µ(Di− |R(Ki(r
′,m′))). (A.3)

Since, by assumption, i’s choice is encoded i’s local state, there exists a unique yi

such that R(Ki(r,m)) ⊆ Dyi
. Since i obtains no evidence for the initial choice, we

have that for all i−-choice sets Di− and D′
i− ,

µDyi
∩D

i−
(R(Ki(r,m))) = µDyi

∩D′

i−
(R(Ki(r,m))). (A.4)

Thus, whenever µ(Dyi
∩Di−) > 0 and µ(Dyi

∩D′
i−) > 0, we have

µ(R(Ki(r,m)) |Dyi
∩Di−) = µDyi

∩D
i−

(R(Ki(r,m)))

= µDyi
∩D′

i−
(R(Ki(r,m)))

= µ(R(Ki(r,m)) |Dyi
∩D′

i−).

It now follows by Lemma 1 that R(Ki(r,m)) is conditionally independent of every

i−-choice set given Dyi
. (Though Lemma 1 actually shows only that R(Ki(r,m))
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is conditionally independent of every i− choice set Di− such that µ(Di− ∩Dyi
) > 0,

conditional independence is immediate if µ(Di−∩Dyi
) = 0) Thus, for any i−-choice

set Di− , we have

µ(Di− |R(Ki(r,m))) = µ(Di− |R(Ki(r,m)) ∩Dyi
) = µ(Di− |Dyi

) = µ(Di−),

where the last equality follows because we have assumed that i’s choice is inde-

pendent of the choices made by other agents. Similarly, µ(Di− |R(Ki(r
′,m′))) =

µ(Di−), so (A.3) follows, and i− does indeed maintain generalized run-based prob-

abilistic fi−-secrecy with respect to i.

For the converse, suppose that i− maintains generalized run-based probabilistic

fi−-secrecy with respect to i. Thus, for all points (r,m), i−-choice sets Di− , and

measures µ ∈ MINIT
i (∆), we have (A.3). Given two i−-choice sets Di− and D′

i−

and an i-information set Ki(r,m) such that R(Ki(r,m)) ⊆ Dyi
, we want to show

(A.4). To do so we first show that there exists a measure µ ∈ MINIT
i (∆) that places

positive probability on all the cells. (We will make use of this particular measure for

the duration of the proof.) Our strategy is to take a countable linear combination

of the cell-specific probability measures, such that the set of runs in each cell is

assigned positive probability by µ. Let yi1, yi2, . . . be a countable enumeration of

INIT i, and let D1, D2, . . . be a countable enumeration of the possible i−-choice

sets. Define the function µ such that for U ∈ F ,

µ(U) =
∑

j≥1,k≥1

µDyij
∩Dk

(U ∩Dyij
∩Dk)

2jk
.

It is straightforward to check that µ ∈ MINIT
i (∆) and that it places a positive

probability on all the cells in D. Furthermore, we have µDyi
∩D

i−
(R(Ki(r,m))) =

µ(R(Ki(r,m)) |Dyi
∩Di−), and the same holds if we replace Di− with D′

i− .
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Given an i-information set Ki(r,m), let yi be the initial choice for i such that

R(Ki(r,m)) ⊆ Dyi
. For all i− choice sets Di− , we have

µDyi
∩D

i−
(R(Ki(r,m))) = µ(R(Ki(r,m) |Dyi

∩Di−).

Thus, to prove (A.4), it suffices to show that

µ(R(Ki(r,m) |Dyi
∩Di−) = µ(R(Ki(r,m) |Dyi

∩D′
i−).

Standard probabilistic manipulations show that

µ(R(Ki(r,m)) |Dyi
∩Di−) · µ(Dyi

|Di−) = µ(R(Ki(r,m)) ∩Dyi
|Di−); (A.5)

a similar equation holds if we replace Di− by D′
i− . Since either R is synchronous

or i has perfect recall in R, there exists a set Ω of i-information sets such that

{R(K) : K ∈ Ω} partitions R. By Lemma 1 and (A.3), it follows that i−-

choice sets are independent of the i-information sets in Ω. Applying (A.3) again,

it follows that i−-choice sets are independent of all i-information sets. Thus,

µ(R(Ki(r,m)) ∩ Dyi
|Di−) = µ(R(Ki(r,m)) |Di−) = µ(R(Ki(r,m))). Since Di−

and Dyi
are independent by assumption, it follows that µ(Dyi

|Di−) = µ(Dyi
).

Thus, (A.5) reduces to

µ(R(Ki(r,m)) |Dyi
∩Di−) · µ(Dyi

) = µ(R(Ki(r,m))).

The same is true forD′
i− , so because µ(Dyi

) > 0 it follows that µ(R(Ki(r,m)) |Dyi
∩

Di−) = µ(R(Ki(r,m)) |Dyi
∩D′

i−). (A.4) is now immediate. ut

A.4 Generalizing from probability to plausibility

In this section we give the details of the plausibilistic results presented in Section

3.3. All those results correspond to probabilistic results from the previous section;
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in many cases the proofs are almost identical. For brevity we focus here on the

nontrivial subtleties that arise in the plausibilistic case.

To show that Proposition 8 generalizes to run-based plausibility systems is

straightforward. We simply replace all occurrences of multiplication and addition

in the proof of Proposition 8 with ⊗ and ⊕; all the resulting equations hold by the

properties of cacps’s.

To define analogues of Theorems 3 and 4, we need a language that allows

statements of the form Pli(φ) = c, where c is a constant that is interpreted as

a plausibility value. Once we do this, the proofs of these results transfer to the

plausibilistic setting with almost no change. We omit the straightforward details.

To prove Propositions 6 and 7, we first prove two results that generalize Lemma

1. To do so, we need the following definition, taken from [36]. Define a cacps to be

acceptable if U ∈ F ′ and Pl(V |U) 6= ⊥ implies that V ∩ U ∈ F ′. To understand

the intuition behind this definition, consider the special case where U = W . Since

W ∈ F ′ (this follows from the fact that F ′ is a nonempty and is closed under

supersets in F), we get that if Pl(V ) 6= ⊥, then V ∈ F ′. This is an analogue of

the situation in probability, where we can always condition on a set of nonzero

measure.

Lemma 3 Let (W,F ,F ′,Pl) be an acceptable cacps. Suppose that Y1, Y2, . . . is a

partition of Y ∈ F ′, and that Yi ∈ F for i = 1, 2, 3, . . .. For all X ∈ F , the

following are equivalent:

(a) Pl(X |Yi) = Pl(X |Yj) for all Yi, Yj ∈ F ′.

(b) Pl(X |Yi) = Pl(X |Y ) for all Yi ∈ F ′.

Proof: Clearly (b) implies (a). To see that (a) implies (b), first note that since we
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are dealing with an acceptable cacps, if Yj /∈ F ′, then Pl(Yj |Y ) = ⊥ and hence,

for all X, Pl(X ∩ Yj |Y ) = ⊥. Given Yi ∈ F ′, it follows that

Pl(X |Y ) = ⊕{j:Yj∈F ′}Pl(X ∩ Yj |Y )

= ⊕{j:Yj∈F ′}(Pl(X |Yj) ⊗ Pl(Yj |Y ))

= ⊕{j:Yj∈F ′}(Pl(X |Yi) ⊗ Pl(Yj |Y ))

= Pl(X |Yi) ⊗ (⊕{j:Yj∈F ′}Pl(Yj |Y ))

= Pl(X |Yi),

as needed. ut

In the probabilistic setting, if either part (a) or (b) of Proposition 1 holds,

we are able to conclude that Yi is conditionally independent of X given Y . By

the symmetry of independence in the probabilistic setting, we can conclude that

X is also conditionally independent of Yi given Y , that is, that Pr(Yi |X ∩ Y ) =

Pr(Yi |Y ). In the plausibilistic setting, independence is not symmetric in general

unless we make an additional assumption, namely that ⊗ is symmetric. We say

that a cacps is commutative if its ⊗ operator is commutative.

Lemma 4 Suppose that (W,F ,F ′,Pl) is a commutative acceptable cacps; Y1, Y2, . . .

is a partition of Y ∈ F ′; X ∈ F ′, X ⊆ Y , and Pl(X |Y ) 6= ⊥; and for all

Yi, Yj ∈ F ′, Pl(X |Yi) = Pl(X |Yj). Then, for all Yi ∈ F , Pl(Yi |X) = Pl(Yi |Y ).

Proof: First, suppose that Yi ∈ F ′. By Lemma 3, we have that Pl(X |Yi) =

Pl(X |Y ). Since Yi ∩ Y = Yi and ⊗ is commutative, we have

Pl(X ∩ Yi |Y ) = Pl(X |Yi) ⊗ Pl(Yi |Y )

= Pl(X |Y ) ⊗ Pl(Yi |Y )

= Pl(Yi |Y ) ⊗ Pl(X |Y ).
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Similarly, since X ⊆ Y , we have

Pl(X ∩ Yi |Y ) = Pl(Yi |X) ⊗ Pl(X |Y ).

Thus, Pl(Yi |Y ) ⊗ Pl(X |Y ) = Pl(Yi |X) ⊗ Pl(X |Y ). Since Pl(X |Y ) 6= ⊥ by

assumption, it follows from the definition of a cacps that Pl(Yi |Y ) = Pl(Yi |X).

If Yi 6∈ F ′ but Yi ∈ F , then Yi∩X /∈ F ′ (since F ′ is closed under supersets in F).

Since we are working in an acceptable cacps, Pl(Yi |Y ) = ⊥ and Pl(Yi |X) = ⊥,

so again Pl(Yi |Y ) = Pl(Yi |X). ut

With these results, plausibilistic versions of Propositions 6 and 7 can be proved

with only minor changes to the proof in the probabilistic case, provided we make

the additional assumptions stated in the main text. We replace the use of Lemma 1

by Lemma 3. The appeal to the symmetry of conditional independence is replaced

by an appeal to Lemma 4. However, to use this lemma, we need to assume that

⊗ is commutative and that for all points (r,m),

• Plcp(Ki(r,m) | PT (R)) 6= ⊥ and Plcp(Kj(r,m) | PT (R)) 6= ⊥ (in the proof

of total secrecy in the generalization of Proposition 6);

• Plcp(Ki(r,m) | PT (m)) 6= ⊥ and Plcp(Kj(r,m) | PT (m)) 6= ⊥ (in the the

proof of synchronous secrecy in the generalization of Proposition 6); and

• Pl(R(Ki(r,m)) |R) 6= ⊥ and Pl(R(Kj(r,m)) |R) 6= ⊥ (in the generalization

of Proposition 7).

(We do not have to assume that the relevant cacps’s are acceptable for these

propositions; it is enough that they are commutative. We used acceptability in

the proof of Lemma 3 to show argue that if a set Yi is not in F ′, then Pl(Yi) = ⊥.
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Here, the sets Yi are of the form R(Ki(r,m)), and our other assumptions guarantee

that they are in F ′.)

Turning to the generalization of Theorem 5, the first step is to define an adver-

sarial plausibility system. The definition is completely analogous to that of that of

an adversarial probability system, except that now the set ∆ consists of the accept-

able conditional plausibility spaces (D,FD,F
′
D,PlD), for each cell D ∈ D. Again,

we assume that R(Ki(r,m)) ∩ D ∈ FD and that, if R(Ki(r,m)) ∩ D 6= ∅, then

R(Ki(r,m))∩D ∈ F ′
D and PlD(R(Ki(r,m))∩D) 6= ⊥. We say that an agent i ob-

tains no plausibilistic evidence for the initial choice in (R,D,∆) if for allD,D′ ∈ D

and all points (r,m) such that R(Ki(r,m))∩D 6= ∅ and R(Ki(r,m))∩D′ 6= ∅, we

have

PlD(R(Ki(r,m)) ∩D) = PlD′(R(Ki(r,m)) ∩D′).

Suppose that D is determined by INIT (as in the probabilistic case), and that

the conditional plausibility spaces of ∆ are all defined with respect to the same

domain D of plausibility values and with the same operations ⊕ and ⊗, where ⊗ is

commutative. Let FD be the σ-algebra generated by ∪D∈DFD. Let MINIT ,Pl
i (∆)

consist of all the acceptable plausibility spaces (R,FD,F
′,Pl) such that

• F ′ is a nonempty subset of FD that is closed under supersets;

• if A ∈ FD and B ∈ F ′ ∩ F ′
D , then Pl(A |B) = PlD(A |B);

• for all agents i and points (r,m), there exists a cell D such that Pl(D) 6= ⊥

and R(Ki(r,m)) ∩D 6= ∅; and

• Pl(D(y1,...,yn)) = Pl(Dyi
) ⊗ Pl(∩j 6=iDyj

).

We can now state and prove the plausibilistic analogue of Theorem 5.
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Theorem 12 Let (R,D,∆) be the adversarial plausibility system determined by

INIT and suppose that R is either synchronous or a system where i has perfect

recall. Agent i obtains no evidence for the initial choice in (R,D,∆) iff agent

i− maintains generalized run-based plausibilistic fi−-secrecy with respect to i in

(R,MINIT ,Pl
i (∆)).

Proof: The proof is basically the same as that of Theorem 5, but some new

subtleties arise because we are dealing with plausibility. For the forward di-

rection, we want to show that i− maintains generalized run-based plausibilis-

tic fi−-secrecy under the assumption that i obtains no evidence for the initial

choice in (R,D,∆). Much as in the proof of Theorem 5, we can show that

Pl(R(Ki(r,m)) |Dyi
∩ Di−) = Pl(R(Ki(r,m)) |Dyi

∩ D′
i−) if Di− ∩ Dyi

∈ F ′

and D′
i− ∩ Dyi

∈ F ′. Continuing in the spirit of that proof, we now want to

show that Pl(Di− |R(Ki(r,m)) ∩ Dyi
) = Pl(Di− |Dyi

) = Pl(Di−). For the sec-

ond equality, note that, by assumption, Pl(Di− ∩ Dyi
) = Pl(Di−) ⊗ Pl(Dyi

).

Since the properties of acceptable conditional plausibility spaces guarantee that

Pl(Di− |Dyi
) ⊗ Pl(Dyi

) = Pl(Di− ∩Dyi
), it follows that Pl(Di− |Dyi

) ⊗ Pl(Dyi
) =

Pl(Di−) ⊗ Pl(Dyi
). Since Pl(Dyi

) 6= ⊥, Pl(Di− |Dyi
) = Pl(Di−).

To prove the first equality, we want to apply Lemma 4. To do so, we must

first show that Pl(R(Ki(r,m)) |Dyi
) 6= ⊥. To see that this holds, recall that by

assumption there exists a cell D such that Pl(D) 6= ⊥, PlD(R(Ki(r,m))∩D) 6= ⊥,

and R(Ki(r,m))∩D ∈ F ′. Since R(Ki(r,m))∩D 6= ∅, we must have that D ⊆ Dyi
.

Indeed, we must have D = D̂i− ∩Dyi
for some i−-choice set D̂i− . Thus, we have

Pl(R(Ki(r,m)) |Dyi
) ≥ Pl(R(Ki(r,m)) ∩D |Dyi

)

= Pl(R(Ki(r,m)) |D) ⊗ Pl(D̂i− |Dyi
)
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= PlD(R(Ki(r,m)) ∩D) ⊗ Pl(D̂i−).

By assumption PlD(R(Ki(r,m)) ∩ D) 6= ⊥. Since Pl(D) 6= ⊥ and D ⊆ D̂i− , it

follows that Pl(D̂i−) 6= ⊥. Thus, Pl(R(Ki(r,m)) |Dyi
) 6= ⊥.

For the converse, we must construct an acceptable measure Pl and a set F ′

such that (R,FD,F
′,Pl) ∈ MINIT ,Pl

i (∆). We take F ′ to consist of the sets U such

that U ∩ D ∈ F ′
D for some cell D. For Pl, we start by taking some arbitrary

total ordering ≺ of the cells in D. Given V ∈ F and U ∈ F ′, let Pl(V |U) =

PlD(V ∩D |U ∩D) where D is the highest-ranked cell such that U ∩D ∈ FD. By

construction, Pl behaves identically to the cell-specific measures when we condition

on subsets of cells. It is easy to check that for all yi ∈ INIT i and i−-choice sets Di− ,

we have Pl(Dyi
∩Di−) = >, Pl(Dyi

) = >, and Pl(Di−) = >. The independence of

the choices made by i and i− follows immediately.

To see that the measure satisfies the conditioning axiom (in the definition of

a cacps), suppose that U1, U2, U3 ∈ F and U2 ∩ U3 ∈ F ′. We must show that

Pl(U1 ∩ U2 |U3) = Pl(U1 |U2 ∩ U3) ⊗ Pl(U2 |U3). There are two cases. If the

highest-ranked cell that intersects U3 (call it D) also intersects U2, then all three

terms in the equality are determined by PlD, and the equality follows by applying

the conditioning axiom to PlD with U1 ∩ D,U2 ∩ D, and U3 ∩ D. If the highest-

ranked cellD that intersects U3 does not intersect U2, then the first and third terms

in the equality are both determined by PlD and must be ⊥ because U2 ∩D = ∅.

Finally, the measure Pl is acceptable (as required) because the underlying cell-

specific measures are acceptable.

The remainder of the proof is a relatively straightforward extension of the

probabilistic case. That i−-choice sets are independent of i-information sets follows

from Lemma 4, using the facts that agent i− maintains generalized run-based
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plausibilistic fi−-secrecy, cells (and thus i−-choice sets) have non-⊥ plausibility by

construction, and all information sets are in F ′. ut



Appendix B

Proofs for Chapter 5
Proposition 10: If a synchronous trace system Σ satisfies separability (resp.,

generalized noninterference), then H maintains synchronous secrecy (resp., syn-

chronous fhi-secrecy) with respect to L in R(Σ).

Proof: We prove the result for separability. The proof for generalized nonin-

terference is similar and left to the reader. Suppose that Σ satisfies separability.

Let rt and rt
′

be runs in R(Σ). We want to show that, for all times m, we have

KL(rt,m) ∩ KH(rt
′

,m) 6= ∅. Since Σ satisfies separability, there exists a trace

t′′ ∈ Σ such that t′′ � L = t � L and t′′ �H = t′ �H. It follows immediately that

t′′m �L = tm �L and t′′m �H = t′m �H. Thus, (rt
′′

,m) ∈ KL(rt,m) ∩ KH(rt
′

,m). ut

Proposition 11: A limit-closed synchronous trace system Σ satisfies separability

(resp. generalized noninterference) iff H maintains synchronous secrecy (resp.,

synchronous fhi-secrecy) with respect to L in R(Σ).

Proof: We give the argument for separability here; the argument for generalized

noninterference is similar. The forward direction follows from Proposition 10. For

the converse, suppose that H maintains synchronous secrecy with respect to L in

R(Σ). Given t, t′ ∈ Σ, let t′′ be the trace such that t′′ �L = t�L and t′′ �H = t′ �H.

We must show that t′′ ∈ Σ. Since H maintains synchronous secrecy with respect

to L in R(Σ), for all m, there exists a run rm ∈ R(Σ) such that rmL (m) = rtL(m)

and rmH(m) = rt
′

H(m). Thus, for all m, there exists a trace tm ∈ Σ such that

tmm �L = tm �L and tmm �H = t′m �H. It follows that t′′m = tmm for all m. Since tm ∈ Σ

for all m, it follows by limit closure that t′′ ∈ Σ, as desired. ut

170
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Proposition 12: If Σ is an asynchronous trace system that satisfies asynchronous

separability (resp. asynchronous generalized noninterference), then H maintains

total secrecy (resp. total fhi-secrecy) with respect to L in R(Σ).

Proof: Suppose that Σ satisfies asynchronous separability, and let (r,m) and

(r′,m′) be arbitrary points. By the construction of R(Σ), there exist traces t, t′ ∈ T

such that rL(m) = t �L and rH(m) = t′ �H. Let t′′ be an interleaving of t �L and

t′ �H. Since Σ satisfies asynchronous separability, t′′ ∈ Σ. Let T ′′ be a run-like set

of traces that contains t′′. (Such a set must exist because Σ is closed under trace

prefixes.) By definition, rT
′′

∈ R(Σ). Taking m to be the length of t′′, it follows

that r′′L(m′′) = rL(m) and r′′H(m′′) = r′H(m′). Thus, H maintains total secrecy with

respect to L.

The proof for asynchronous generalized noninterference (and total fhi-secrecy)

is analogous. ut

Proposition 13: If Σ is an asynchronous trace system that is closed under in-

terleavings, then Σ satisfies asynchronous separability iff H maintains total secrecy

with respect to L in R(Σ).

Proof: We have already established the forward direction. For the converse,

suppose that H maintains total secrecy with respect to L in R(Σ), and that Σ is

closed under interleavings. Given t, t′ ∈ Σ, there exist points (r,m) and (r′,m′)

in PT (R(Σ)) such that rL(m) = t � L and r′H(m′) = t′ �H. Since H maintains

total secrecy with respect to L in R(Σ), there exists a point (r′′,m′′) such that

r′′L(m′′) = rL(m) and r′′H(m′′) = r′H(m′). By the construction of R(Σ), there exists

a run-like set T of traces such that r′′ = rT . Taking t′′ to be the trace of length

m′′ in T , it follows that t′′ �L = t�L and t′′ �H = t′ �H. Because Σ is closed under
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interleavings, t′′ ∈ Σ as required. ut

Theorem 7: If I = (R, π) is compatible with P , then P is strongly anonymous

on the alphabet A if and only if for every agent i ∈ IA, the action a performed by

i is anonymous up to IA with respect to o in I.

Proof: Suppose that P is strongly anonymous on the alphabet A and that i ∈ IA.

Given a point (r,m), suppose that (I, r,m) |= θ(i, a), so that the event i.a appears

in re(n) for some n ≥ m. We must show that (I, r,m) |= Po[θ(i
′, a)] for every

i′ ∈ IA, that is, that a is anonymous up to IA with respect to o. For any i′ ∈ IA,

this requires showing that there exists a point (r′,m′) such that ro(m) = r′o(m
′),

and r′o(n
′) includes i′.a, for some n′ ≥ m′. Because R is compatible with P , there

exists t ∈ P such that t = re(n) and i.a appears in t. Let t′ be the trace identical

to t except that i.a is replaced by i′.a. Because P is strongly anonymous on A,

P = f−1
A (fA(P )), and t′ ∈ P . By compatibility, there exists a run r′ such that

r′e(n) = t′ and r′o(n) = fA(t′). By construction, fA(t) = fA(t′), so ro(n) = r′o(n).

Because the length-m trace prefixes of fA(t) and fA(t′) are the same, it follows that

ro(m) = r′o(m). Because (I, r′,m) |= θ(i′, a), (I, r,m) |= Po[θ(i
′, a)] as required.

Conversely, suppose that for every agent i ∈ IA, the action a performed by i

is anonymous up to IA with respect to o in I. We must show that P is strongly

anonymous. It is clear that P ⊆ f−1
A (fA(P )), so we must show only that P ⊇

f−1
A (fA(P )). So suppose that t ∈ f−1

A (fA(P )). If no event i.a appears in t, for

any i ∈ IA, then t ∈ P trivially. Otherwise, some i.a. does appear. Because

t ∈ f−1
A (fA(P )), there exists a trace t′ ∈ P that is identical to t except that i′.a

replaces i.a, for some other i′ ∈ IA. Because R is compatible with P , there exists

a run r′ ∈ R such that r′o(m) = fA(t′) and r′e(m) = t′ (where m = |t′|). Clearly

(I, r′,m) |= θ(i′, a) so, by anonymity, (I, r′,m) |= Po[θ(i, a)], and there exists a
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run r such that ro(m) = r′o(m) and (I, r,m) |= θ(i, a). Because the action a can

be performed at most once, the trace re(m) must be equal to t. By compatibility,

t ∈ P as required. ut

Theorem 8: Suppose that (I, r,m) |= θ(i, a) exactly if f(r,m)(a) = i. Then action

a is anonymous up to IA with respect to o for each agent i ∈ IA if and only if at

all points (r,m) such that f(r,m)(a) ∈ IA, f is IA-value opaque with respect to o.

Proof: Suppose that f is IA-value opaque, and let i ∈ IA be given. If (I, r,m) |=

θ(i, a), then f(r,m)(a) = i. We must show that, for all i′ ∈ IA, (I, r,m) |=

Po[θ(i
′, a)]. Because f is IA-value opaque at (r,m), there exists a point (r′,m′)

such that r′o(m
′) = ro(m) and f(r′,m′)(a) = i′. Because (I, r′,m′) |= θ(i′, a),

(I, r,m) |= Po[θ(i
′, a)].

Conversely, suppose that for each agent i ∈ IA, a is anonymous up to IA

with respect to o. Let (r,m) be given such that f(r,m)(a) ∈ IA, and let that i =

f(r,m)(a). It follows that (I, r,m) |= θ(i, a). For any i′ ∈ IA, (I, r,m) |= Po[θ(i
′, a)],

by anonymity. Thus there exists a point (r′,m′) such that r′o(m
′) = ro(m) and

(I, r′,m′) |= θ(i′, a). It follows that f(r′,m′)(a) = i′, and that f is IA-value opaque.

ut



Appendix C

Proof Sketch for Theorem 11
For the proof of Theorem 11, we treat the proof for nonprobabilistic noninterference—

that is, the proof of parts (a) and (b)—separately from the proof of probabilistic

noninterference. This is technically unnecessary, because the necessary lemmas for

the probabilistic proof are generalizations of the lemmas for the nonprobabilistic

proof. We take this approach so that we can prove the nonprobabilistic lemmas,

which are simpler to understand, without the overhead of probability trees and

probability distributions. The nonprobabilistic lemmas are proven in Section C.1,

whereas the probabilistic lemmas and Theorem 11 are proven in Section C.2.

All of the results in this section assume the existence of a single variable typing

Γ. When convenient, we avoid specifying Γ and assume that the typing is given.

We heavily overload the symbol ∼L to represent low equivalence relations. We

write σ ∼L σ′ to denote that states σ and σ′ are low-equivalent with respect to

Γ, that is, if σ(x) = σ′(x) whenever Γ(x) = L. Refiners ψ, ψ′ ∈ Ref are low-

equivalent, written ψ ∼L ψ′, if ψ(L) = ψ′(L). Similarly, joint strategies ω, ω′ ∈

Strat are low-equivalent, written ω ∼L ω′ if ω(L) = ω′(L). Traces t and t′ are

low-equivalent, written t ∼L t
′, if t�L = t′ �L.

The low-equivalence relation on well-typed commands, denoted c ∼L c′, is

defined by the following rules:

(a) c ∼L c for all commands c;

(b) if Γ ` c1 : H cmd and Γ ` c2 : H cmd, then c1 ∼L c2;

(c) if Γ ` c1 : H cmd and Γ ` c2 : H cmd, then c1; c ∼L c2; c for all commands

174
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c; and

(d) if Γ ` cH : H cmd, then cH ; c ∼L c and c ∼L cH ; c for all commands c.

Property 1 The relation ∼L is an equivalence relation on well-typed commands.

Proof: Reflexivity is immediate by rule (a), and symmetry follows because the

rules themselves are symmetric. Transitivity follows by a straightforward analysis

of each pair of rules. ut

Two configurations m = (c, σ, ψ, t, ω) and m′ = (c′, σ′, ψ′, t′, ω′) are low-equiv-

alent, written m ∼L m
′, if c ∼L c

′, σ ∼L σ
′, ψ ∼L ψ

′, t ∼L t
′, and ω ∼L ω

′.

C.1 Nonprobabilistic proof details

The following lemma, an analogue of the “Simple Security” lemma of [92], demon-

strates that low-typed expressions have the same values in low-equivalent states.

Lemma 5 If Γ ` e : L, then Γ(x) = L for every variable x appearing in e. In

particular, if Γ ` e : L and σ ∼L σ
′, then σ(e) = σ′(e).

Proof: By induction on the structure of e. ut

The following lemma demonstrates that configurations with high-typed com-

mands take steps that preserve low-equivalence (in the sense that no low events

are emitted and the resulting configuration is low-equivalent to the initial config-

uration).

Lemma 6 If Γ ` c : H cmd, then for all σ, ψ, t, and ω, if

(c, σ, ψ, t, ω) −→ (c′, σ′, ψ′, t′, ω′),

then (c, σ, ψ, t, ω) ∼L (c′, σ′, ψ′, t′, ω′), and moreover Γ ` c′ : H cmd.
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Proof: By induction on the derivation of (c, σ, ψ, t, ω) −→ (c′, σ′, ψ′, t′, ω′). ut

The following lemma demonstrates that if the first command in a sequence ter-

minates with some configuration, then the sequence eventually steps to an identical

configuration with skip replaced by the second command in the sequence.

Lemma 7 For all c0, c1, σ, σ
′, ψ, ψ′, t, t′, ω, and ω′, if

(c0, σ, ψ, t, ω) −→∗ (skip, σ′, ψ′, t′, ω′),

then

(c0; c1, σ, ψ, t, ω) −→∗ (c1, σ
′, ψ′, t′, ω′).

Proof: By induction on the length of the derivation of

(c0, σ, ψ, t, ω) −→∗ (skip, σ′, ψ′, t′, ω′),

using rule Seq-1 for the base case and rule Seq-2 for the inductive case. ut

The following lemma demonstrates that high-typed commands always termi-

nate, and that the resulting terminal configuration is low-equivalent to the initial

configuration.

Lemma 8 If Γ ` c : H cmd, then for any σ, ψ, t and ω there exists σ′, ψ′, t′ and

ω′ such that

(c, σ, ψ, t, ω) −→∗ (skip, σ′, ψ′, t′, ω′),

and

(c, σ, ψ, t, ω) ∼L (skip, σ′, ψ′, t′, ω′).

Proof: Note that a high-typed command cannot contain a while-statement. The

result follows by structural induction on c, using Lemma 6 to demonstrate low

equivalence for the base cases. For sequences we appeal to Lemma 7. ut
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The following lemma demonstrates that low-equivalent configurations with the

same command take steps that preserve low equivalence.

Lemma 9 For all c, σ1, σ2, ψ1, ψ2, t1, t2, ω1, ω2, and m1, if

(c, σ1, ψ1, t1, ω1) ∼L (c, σ2, ψ2, t2, ω2), and (c, σ1, ψ1, t1, ω1) −→ m1,

then there exists a configuration m2 such that

(c, σ2, ψ2, t2, ω2) −→ m2, and m1 ∼L m2.

Proof: By induction on the derivation (c, σ1, ψ1, t1, ω1) −→ m1, using Lemma 5

for the rules Assign, Out, If-1, and If-2. ut

The main nonprobabilistic lemma demonstrates that the traces emitted by low-

equivalent configurations are low-equivalent.

Lemma 10 For all configurations m1, m2, and m′
1, if

m1 ∼L m2 and m1 −→
∗ m′

1,

then there exists a configuration m′
2 such that

m2 −→
∗ m′

2 and m′
1 ∼L m

′
2.

Proof: By induction on the length of the derivation of m1 −→
∗ m′

1. The base case

is trivial. Otherwise, write m1 = (c1, σ1, ψ1, t1, ω1) and m2 = (c2, σ2, ψ2, t2, ω2), and

consider the cases for c1 ∼L c2:

(a) If c1 = c2, then suppose that m1 −→ m′′
1 and m′′

1 −→∗ m′
1. By Lemma 9,

there is a state m′′
2 such that m2 −→ m′′

2 and m′′
1 ∼L m

′′
2. We can then apply

the inductive hypothesis.
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(b) If c1 and c2 are both high-typed, suppose that m1 −→ m′′
1 and m′′

1 −→∗ m′
1.

By Lemma 6, m′′
1 is low equivalent to m2, and we can apply the inductive

hypothesis.

(c) If c1 = cH1 ; c and c2 = cH2 ; c for some command c and high-typed commands

cH1 and cH2 , then consider the form of cH1 . If cH1 = skip, then m1 −→ m̂,

where m̂ = (c, σ1, ψ1, t1, ω1), and since (c, σ1, ψ1, t1, ω1) is low equivalent to

m2, we can apply the inductive hypothesis. Otherwise, by Lemma 6 and

Seq-2, m1 −→ m′′
1 for some m′′

1 such that is low equivalent to m2, and we

can apply the inductive hypothesis.

(d) If c1 = cH1 ; c2, then consider the form of cH1 . If cH1 = skip, then m1 −→

(c2, σ1, ψ1, t1, ω1), and since (c2, σ1, ψ1, t1, ω1) is low equivalent to m2, we

can apply the inductive hypothesis. Otherwise, by Lemma 6 and Seq-2,

m1 −→ m′′
1 such that m′′

1 is low equivalent to m2, and we can apply the

inductive hypothesis.

If c2 = cH2 ; c1, then by Lemma 8 and Lemma 7, there is a configuration

m′′
2 = (c1, σ

′′
2 , ψ

′′
2 , t

′′
2, ω

′′
2) such that m2 −→∗ m′′

2 and m2 ∼L m′′
2, and thus

m1 ∼L m
′′
2. Suppose m1 −→ m′′

1 and m′′
1 −→∗ m′

1. Then by Lemma 9, there

is a configuration m′′′
2 such that m′′

2 −→ m′′′
2 such that m′′

1 ∼L m
′′′
2 , and we

can apply the inductive hypothesis.

ut

The first two cases of Theorem 11 follow directly from this result.
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C.2 Probabilistic proof details

We now generalize the results of the previous section to account for probabilistic

programs. The structure of the proof is similar to the nonprobabilistic results.

Given a vertex v of a probability tree Tm, let Tv denote the subtree of Tm rooted

at v, and let Vv and Rv denote the sets of vertices and rays of Tv, respectively. We

denote the configuration with which v is labeled as cf (v), and we write v ∼L v
′ if

cf (v) ∼L cf (v′).

Let a frontier set of a vertex v be a finite set of vertices S ⊆ Vv such that for

every ray ρ ∈ Rv there exists exactly one vertex from S on ρ. Given a frontier set

S of v, we call F = (v, S) a frontier. Note that {v} is a frontier set of v, and that

given any frontier F we can obtain a new frontier F ′ by replacing any vertex in the

frontier set with all of its descendants. Note also that a frontier set S partitions

Rv into sets of rays that go through particular vertices in S.

Define the depth of a frontier (v, S) to be the length of the longest path (that

is, the number of edges in the longest path) between v and vertices in S.

Because the vertices in a frontier F = (v, S) induce a partition on the sets

of rays going through v, the function π on vertices gives rise to a discrete prob-

ability measure on sets of vertices on S, normalized by the value of π(v). More

concretely, for any vertex v′ in a frontier set S of v, let πv(v
′) be the product of

the probabilities on the path from v to v′. We can now compare the distribution of

low-equivalent configurations in two different frontiers. Given a frontier F = (v, S)

and a configuration m, let

[m]F , {v′ ∈ S | cf (v′) ∼L m}

be the subset of S whose configurations are low-equivalent to m. Define two
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frontiers F = (v, S) and F ′ = (v′, S ′) to be low-equivalent, denoted F ∼L F
′, if for

any configuration m we have

∑

v′′∈[m]F

πv(v
′′) =

∑

v′′∈[m]F ′

πv′(v
′′).

The following lemma, which generalizes Lemma 7, demonstrates that if the

first command in a sequence terminates in all execution paths, then the sequence

eventually steps, in all execution paths, to the second command, while preserving

other aspects of the original terminal configuration.

Lemma 11 If v is a vertex in a probability tree such that cf (v) = (c0; c1, σ, ψ, t, ω),

and F0 = (v0, S0) is a frontier such that

• cf (v0) = (c0, σ, ψ, t, ω),

• the subtree rooted at v0 is finite, and

• S0 consists of the root vertices of the subtree rooted at v0,

then there exists a frontier F = (v, S) and a one-to-one mapping g : S0 →

S such that if v′0 ∈ S0 and cf (v′0) = (skip, σ′, ψ′, t′, ω′), we have cf (g(v′0)) =

(c1, σ
′, ψ′, t′, ω′).

Proof: By induction on the depth of F0, using rules Seq-1 and Seq-2. ut

The following lemma, which generalizes Lemma 8, demonstrates that high-

typed commands terminate in all execution paths and that terminal configurations

are low-equivalent to the initial configuration.

Lemma 12 If v is a vertex in a probability tree such that cf (v) = (c, σ, ψ, t, ω)

and Γ ` c : H cmd, then the subtree rooted at v is finite and that for any leaf

vertex v′ of that subtree we have v′ ∼L v.
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Proof: By structural induction on c, using Lemma 11 for sequences and Lemma 6

to demonstrate low-equivalence for the base cases. ut

The following lemma, generalizing Lemma 9, demonstrates that low-equivalent

vertices have low-equivalent sets of children.

Lemma 13 If F1 = (v1, S1) and F2 = (v2, S2) are frontiers such that

• v1 ∼L v2,

• S1 and S2 are the sets of children of v1 and v2, and

• cf (v1) and cf (v2) share the same command c,

then F1 ∼L F2.

Proof: By structural induction on c, using Lemma 5 for the rules Assign, Out,

If-1, and If-2. ut

The following lemma is useful for the inductive cases of Lemma 15. It states

that we can combine frontiers of vertices in low-equivalent frontiers to obtain deeper

low-equivalent frontiers.

Lemma 14 If F1 = (v1, S1) and F2 = (v2, S2) are frontiers such that

• F1 ∼L F2;

• g1 is a mapping from S1 to frontier sets such that for any v ∈ S1, (v, g1(v))

is a frontier;

• g2 is a mapping from S2 to frontier sets such that for any v ∈ S2, (v, g2(v))

is a frontier; and



182

• for all v′1 ∈ S1 and v′2 ∈ S2 such that v′1 ∼L v′2, we have (v′1, g1(v
′
1)) ∼L

(v′2, g2(v
′
2));

then F ′
1 = (v1,∪v∈S1g1(v)) and F ′

2 = (v2,∪v∈S2g2(v)) are frontiers such that F ′
1 ∼L

F ′
2.

Proof: F ′
1 and F ′

2 are frontiers, which follows directly from the definition of a

frontier set. To demonstrate the low-equivalence of F ′
1 and F ′

2, we must establish

that for all configurations m we have

∑

v∈[m]F ′
1

πv1(v) =
∑

v∈[m]F ′
2

πv2(v).

Let M denote a set of class representatives (for the equivalence relation ∼L) of

the set of configurations with which the elements of S1 ∪ S2 are labeled. We have

∑
v∈[m]F ′

1

πv1(v) =
∑

v′1∈F1

∑
v∈[m]g1(v′1)

πv1(v
′
1) · πv′1(v)

=
∑

m′∈M

∑
v′1∈[m′]F1

∑
v∈[m]g1(v′1)

πv1(v
′
1) · πv′1(v)

=
∑

m′∈M

∑
v′1∈[m′]F1

πv1(v
′
1) ·

∑
v∈[m]g1(v′1)

πv′1(v).

However, by assumption, for any configuration m and for any v′1 ∈ S1 and v′2 ∈ S2

such that v′1 ∼L v
′
2, we have (v′1, g1(v

′
1)) ∼L (v′2, g2(v

′
2)), and thus

∑

v∈[m]g1(v′1)

πv′1(v) =
∑

v∈[m]g2(v′2)

πv′2(v).

In fact, for any w ∈ S1 such that v′1 ∼L w, we also have

∑

v∈[m]g1(v′1)

πv′1(v) =
∑

v∈[m]g1(w)

πw(v).

Thus, this sum depends only on the low-equivalence class of v′1. We capture this

by defining s(m′,m) to be equal to this sum, resulting in the following equalities:

s(m′,m) =
∑

v∈[m]g1(v′1)
πv′1(v) for any v′1 ∈ S1 such that v′1 ∼L m

′

=
∑

v∈[m]g2(v′2)
πv′2(v) for any v′2 ∈ S2 such that v′2 ∼L m

′.
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We therefore have

∑
v∈[m]F ′

1

πv1(v) =
∑

m′∈M

∑
v′1∈[m′]F1

πv1(v
′
1) · s(m

′,m)

=
∑

m′∈M s(m′,m) ·
∑

v′1∈[m′]F1
πv1(v

′
1)

=
∑

m′∈M s(m′,m) ·
∑

v′2∈[m′]F2
πv2(v

′
2) [as F1 ∼L F2]

=
∑

v∈[m]F ′
2

πv2(v), [similarly]

as desired. ut

We can now state the main lemma, which generalizes Lemma 10.

Lemma 15 If F1 = (v1, S1) is a frontier and v2 ∼L v1, then there exists a frontier

set S2 of v2 such that F1 ∼L (v2, S2).

Proof: By induction on the depth of F1. The base case is trivial, and cases

(a)–(d) are analogues of the cases in the nonprobabilistic proof. As before, write

cf (v1) = (c1, σ1, ψ1, t1, ω1) and cf (v2) = (c2, σ2, ψ2, t2, ω2), and consider the cases

for c1 ∼L c2:

(a) Suppose that c1 = c2. If S ′
1 and S ′

2 are the sets of children of v1 and v2, we

have (v1, S
′
1) ∼L (v2, S

′
2) by Lemma 13. The inductive hypothesis applies to

v′1 ∈ S ′
1 (with appropriate frontier sets Sv′1 ⊆ S1) and elements v′2 ∈ S ′

2 such

that v′1 ∼L v
′
2, and the result follows by Lemma 14.

(b) If c1 and c2 are both high-typed, the result follows by Lemma 6, the inductive

hypothesis applied to the children of v1, and Lemma 14.

(c) If c1 = cH1 ; c and c2 = cH2 ; c for some command c and high-typed commands

cH1 and cH2 , let S ′
1 be the set of children of v1. For each v′1 ∈ S ′

1 we have

v′1 ∼L v1 ∼L v2 (by Seq-1 if cH1 is skip, or by Lemma 6 and Seq-2 otherwise),
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and we can therefore apply the inductive hypothesis. The result follows from

Lemma 14.

(d) If c1 = cH1 ; c2, we can apply the inductive hypothesis using the same rea-

soning used for case (c). Otherwise we have c2 = cH1 ; c1. Let S ′
1 be the set

of children of v1. By Lemma 11 and Lemma 12, there exists a frontier set

S ′
2 of v2 such that for every element v′2 ∈ S ′

2, v
′
2 is labeled with a configu-

ration whose command is c1, and v′2 ∼L v2 ∼L v1. Given any v′2 ∈ S ′
2, let

Sv′2 be the set of children of v′2. By Lemma 13 we have (v1, S
′
1) ∼L (v′2, Sv′2),

and the inductive hypothesis applies to elements v′1 ∈ S ′
1 as in case (a). By

Lemma 14 we can combine the frontiers of the elements of Sv′2 to get a fron-

tier Fv′2 = (v′2, Sv′2) such that Fv′2 ∼L F1. Let S2 = ∪v′2∈S′
2
Sv′2 . We have

(v2, S2) ∼L F1 by Lemma 14.

ut

We are now ready to prove Theorem 11. We do so by establishing a connection

between µm(Em(t)), the probability that configuration m emits trace t, and the

probabilities of vertices of arbitrarily deep frontiers of Tm. Given a trace t and

probability tree Tm with root vertex vr and frontier (vr, S), define:

ES(t) , {ρ ∈ Rm | there exists a vertex v ∈ S on ρ and a trace t′

such that tr(v) extends t′ and t′ �L = t�L}.

The set ES(t) consists of those rays on which traces that are low-equivalent to t

appear at vertices that are ancestors of elements in S. Intuitively, µm(ES(t)) is an

approximation of µm(Em(t)).

Theorem 11: For any command c, if there exists a variable typing Γ and a

security type τ such that Γ ` c : τ cmd, then
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(a) if c does not contain nondeterministic or probabilistic choice, then c satisfies

noninterference;

(b) if c does not contain probabilistic choice, then c satisfies noninterference un-

der refinement; and

(c) c satisfies probabilistic noninterference.

Proof: That c satisfies noninterference and noninterference under refinement fol-

lows from Lemma 10. To demonstrate that c satisfies probabilistic noninterference,

we must show that, for all low-equivalent configurationsm andm′ and traces t, that

µm(Em(t)) = µm′(Em′(t)). We demonstrate that µm(Em(t)) ≤ µm′(Em′(t)); the re-

verse inequality is symmetric. Suppose, by way of contradiction, that µm(Em(t)) >

µm′(Em′(t)). We demonstrate below that there exists a sequence of frontier sets

{Si} of the root vertex vr of Tm such that µm(ESi
(t)) converges to µm(Em(t)). It fol-

lows there exists a frontier set S of Tm such that µm(ES(t)) > µm′(Em′(t)). But by

Lemma 15, there exists a frontier F ′ = (v′r, S
′) of Tm′ such that F ′ ∼L (vr, S). Thus

µm′(ES′(t)) = µm(ES(t)), and µm′(ES′(t)) > µm′(Em′(t)). This is a contradiction,

because ES′(t) ⊆ Em′(t).

We now exhibit a sequence of frontier sets {Si} such that µm(ESi
(t)) converges

to µm(Em(t)). Consider the sequence S0, S1, . . . , Si, . . . of frontier sets of vr that

comprise all the vertices at depth i of Tm. We have Em(t) = ∪i≥0ESi
(t), and for

all i we have ESi
(t) ⊆ ESi+1

(t). Convergence follows due to a standard result in

probability theory [3]. ut
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